Suppr超能文献

基于拓扑结构的自组织映射分层聚类

Topology-based hierarchical clustering of self-organizing maps.

作者信息

Taşdemir Kadim, Milenov Pavel, Tapsall Brooke

机构信息

European Commission Joint Research Centre, Institute for Environment and Sustainability, Monitoring Agricultural Resources Unit, Ispra 21027, Italy.

出版信息

IEEE Trans Neural Netw. 2011 Mar;22(3):474-85. doi: 10.1109/TNN.2011.2107527.

Abstract

A powerful method in the analysis of datasets where there are many natural clusters with varying statistics such as different sizes, shapes, density distribution, overlaps, etc., is the use of self-organizing maps (SOMs). However, further processing tools, such as visualization and interactive clustering, are often necessary to capture the clusters from the learned SOM knowledge. A recent visualization scheme (CONNvis) and its interactive clustering utilize the data topology for SOM knowledge representation by using a connectivity matrix (a weighted Delaunay graph), CONN. In this paper, we propose an automated clustering method for SOMs, which is a hierarchical agglomerative clustering of CONN. We determine the number of clusters either by using cluster validity indices or by prior knowledge on the datasets. We show that, for the datasets used in this paper, data-topology-based hierarchical clustering can produce better partitioning than hierarchical clustering based solely on distance information.

摘要

在分析具有许多自然聚类的数据集时,一种强大的方法是使用自组织映射(SOM),这些聚类具有不同的统计特征,如不同的大小、形状、密度分布、重叠等。然而,通常需要进一步的处理工具,如可视化和交互式聚类,才能从学习到的SOM知识中捕获聚类。一种最新的可视化方案(CONNvis)及其交互式聚类通过使用连接矩阵(加权德劳内图)CONN来利用数据拓扑进行SOM知识表示。在本文中,我们提出了一种针对SOM的自动聚类方法,它是对CONN进行层次凝聚聚类。我们通过使用聚类有效性指标或根据数据集的先验知识来确定聚类的数量。我们表明,对于本文中使用的数据集,基于数据拓扑的层次聚类比仅基于距离信息的层次聚类能产生更好的划分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验