Chongqing Institute of Green and Intelligent Technologies, Chinese Academy of Sciences , Fangzheng Avenue 266, Chongqing 400714, China.
College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials, Sichuan University , South Section of 1st Ring Road 24, Chengdu 610065, China.
Langmuir. 2017 Jan 31;33(4):980-987. doi: 10.1021/acs.langmuir.6b04317. Epub 2017 Jan 13.
A majority of the reported electrografting of aryldiazonium salts result in the formation of covalently attached films with a limited surface coverage of below 5 nmol·cm. Herein, we report the preparation of higher-thickness redox-active viologen-grafted electrodes from the electroreduction of viologen phenyl diazonium salts, by either cyclic voltammetric (CV) sweeps or electrolysis using a fixed potential. Both of the methodologies were successfully applied for various conductive surfaces, including glassy carbon (GC), gold disc, indium tin oxide glass, mesoporous TiO electrodes, and 3D compacted carbon fibers. A robust maximal viologen coverage, Γ = 9.5 nmol·cm, was achieved on a GC electrode by CV electroreduction. Electroreduction held at a fixed potential at E = -0.3 V can fabricate viologen-grafted electrodes with Γ in the range of 0-37 nmol·cm in a controllable way, by simply adjusting the electrodeposition time t. Time-dependent Γ were found to be 10 nmol·cm@2 min, 20 nmol·cm@4.2 min, and 30 nmol·cm@7 min. Furthermore, a TiO electrode coupled with Γ of 140 nmol·cm exhibited electrochromic performance, with the color changing from pale yellow to blue and red brown.
大多数报道的芳基重氮盐的电化学接枝反应导致形成共价附着的薄膜,其表面覆盖率有限,低于 5 nmol·cm。在此,我们报告了通过电化学还原重氮盐,制备具有更高厚度的氧化还原活性的紫罗精接枝电极,方法是循环伏安法(CV)扫描或使用固定电位进行电解。这两种方法都成功地应用于各种导电表面,包括玻碳(GC)、金盘、氧化铟锡玻璃、介孔 TiO 电极和 3D 压缩碳纤维。通过 CV 电化学还原,在 GC 电极上实现了高达 9.5 nmol·cm 的稳定最大紫罗精覆盖率Γ。通过简单地调整电沉积时间 t,在固定电位 E = -0.3 V 下进行的电还原可以以可控的方式制备 Γ 在 0-37 nmol·cm 范围内的紫罗精接枝电极。发现时间相关的 Γ 分别为 10 nmol·cm@2 min、20 nmol·cm@4.2 min 和 30 nmol·cm@7 min。此外,结合 Γ 为 140 nmol·cm 的 TiO 电极表现出电致变色性能,颜色从浅黄色变为蓝色和红棕色。