Biofilms- Research Center for Biointerfaces, Dept. of Biomedical Science, Faculty of Health and Society, Malmö University , Malmö 20506, Sweden.
Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University , 8000 Aarhus, Denmark.
ACS Nano. 2017 Jan 24;11(1):1080-1090. doi: 10.1021/acsnano.6b08089. Epub 2017 Jan 10.
Atherosclerosis and its clinical consequences are the leading cause of death in the western hemisphere. While many studies throughout the last decades have aimed at understanding the disease, the clinical markers in use today still fail to accurately predict the risks. The role of the current main clinical indicator, low density lipoprotein (LDL), in depositing fat to the vessel wall is believed to be the onset of the process. However, many subfractions of the LDL, which differ both in structure and composition, are present in the blood and among different individuals. Understanding the relationship between LDL structure and composition is key to unravel the specific role of various LDL components in the development and/or prevention of atherosclerosis. Here, we describe a model for analyzing small-angle X-ray scattering data for rapid and robust structure determination for the LDL. The model not only gives the overall structure but also the particular internal layering of the fats inside the LDL core. Thus, the melting of the LDL can be followed in situ as a function of temperature for samples extracted from healthy human patients and purified using a double protocol based on ultracentrifugation and size-exclusion chromatography. The model provides information on: (i) the particle-specific melting temperature of the core lipids, (ii) the structural organization of the core fats inside the LDL, (iii) the overall shape of the particle, and (iv) the flexibility and overall conformation of the outer protein/hydrophilic layer at a given temperature as governed by the organization of the core. The advantage of this method over other techniques such as cryo-TEM is the possibility of in situ experiments under near-physiological conditions which can be performed relatively fast (minutes at home source, seconds at synchrotron). This approach now allows the monitoring of structural changes in the LDL upon different stresses from the environment, such as changes in temperature, oxidation, or external agents used or currently in development against atherosclerotic plaque build-up and which are targeting the LDL.
动脉粥样硬化及其临床后果是西半球的主要死亡原因。尽管过去几十年的许多研究都旨在了解这种疾病,但目前使用的临床标志物仍然无法准确预测风险。目前主要的临床指标——低密度脂蛋白(LDL)在将脂肪沉积到血管壁中的作用被认为是该过程的开始。然而,血液中存在许多 LDL 的亚组分,它们在结构和组成上都有所不同,而且在不同个体之间也存在差异。了解 LDL 结构和组成之间的关系是揭示各种 LDL 成分在动脉粥样硬化发展和/或预防中的特定作用的关键。在这里,我们描述了一种用于分析小角度 X 射线散射数据的模型,该模型可用于快速稳健地确定 LDL 的结构。该模型不仅给出了整体结构,还给出了 LDL 核心内部脂肪的特定内部分层。因此,可以作为温度的函数原位跟踪 LDL 的融化,对于从健康的人类患者中提取的样品,并使用基于超速离心和大小排阻色谱的双重方案进行纯化,可以进行该实验。该模型提供了有关信息:(i)核心脂质的颗粒特异性熔融温度,(ii)LDL 核心内部核心脂肪的结构组织,(iii)颗粒的整体形状,以及(iv)给定温度下由核心组织控制的外层蛋白/亲水性层的灵活性和整体构象。与 cryo-TEM 等其他技术相比,该方法的优势在于可以在接近生理条件下进行原位实验,并且可以相对快速地进行实验(家庭光源下几分钟,同步加速器下几秒钟)。这种方法现在可以监测 LDL 在外来环境压力(例如温度变化、氧化或针对动脉粥样硬化斑块形成的外部试剂或目前正在开发的试剂)下的结构变化,这些压力可能会导致 LDL 发生变化。