Department of Chemistry, International Institute for Nanotechnology, Chemistry of Life Processes Institute, Simpson Querrey Institute, Northwestern University, Evanston, IL, 60208, USA.
Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.
Nat Commun. 2023 Jun 10;14(1):3441. doi: 10.1038/s41467-023-38781-2.
Here, we study the upper critical solution temperature triggered phase transition of thermally responsive poly(ethylene glycol)-block-poly(ethylene glycol) methyl ether acrylate-co-poly(ethylene glycol) phenyl ether acrylate-block-polystyrene nanoassemblies in isopropanol. To gain mechanistic insight into the organic solution-phase dynamics of the upper critical solution temperature polymer, we leverage variable temperature liquid-cell transmission electron microscopy correlated with variable temperature liquid resonant soft X-ray scattering. Heating above the upper critical solution temperature triggers a reduction in particle size and a morphological transition from a spherical core shell particle with a complex, multiphase core to a micelle with a uniform core and Gaussian polymer chains attached to the surface. These correlated solution phase methods, coupled with mass spectral validation and modeling, provide unique insight into these thermoresponsive materials. Moreover, we detail a generalizable workflow for studying complex, solution-phase nanomaterials via correlative methods.
在这里,我们研究了在异丙醇中热响应性聚(乙二醇)-嵌段-聚(乙二醇)甲基醚丙烯酸酯-co-聚(乙二醇)苯醚丙烯酸酯-嵌段-聚苯乙烯纳米组装体的上临界溶液温度引发的相转变。为了深入了解上临界溶液温度聚合物的有机溶液相动力学,我们利用了与可变温度液体共振软 X 射线散射相关的可变温度液体池透射电子显微镜。加热到上临界溶液温度以上会触发粒径减小和形态转变,从具有复杂多相核的球形核壳颗粒转变为具有均匀核和附着在表面的高斯聚合物链的胶束。这些相关的溶液相方法,结合质谱验证和建模,为这些温敏材料提供了独特的见解。此外,我们详细介绍了通过相关方法研究复杂溶液相纳米材料的通用工作流程。