Veloso Felipe A
Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago 8580745, Chile.
J Theor Biol. 2017 Mar 21;417:84-99. doi: 10.1016/j.jtbi.2016.12.025. Epub 2016 Dec 31.
Changes in gene expression are thought to regulate the cell differentiation process intrinsically through complex epigenetic mechanisms. In fundamental terms, however, this assumed regulation refers only to the intricate propagation of changes in gene expression or else leads to non-explanatory regresses. The developmental self-regulatory dynamics and evolution of individuated multicellular organisms also lack a unified and falsifiable description. To fill this gap, I computationally analyzed publicly available high-throughput data of histone H3 post-translational modifications and mRNA abundance for different Homo sapiens, Mus musculus, and Drosophila melanogaster cell-type/developmental-period samples. My analysis of genomic regions adjacent to transcription start sites generated a profile from pairwise partial correlations between histone modifications controlling for the respective mRNA levels for each cell-type/developmental-period dataset. I found that these profiles, while explicitly uncorrelated with the respective transcriptional "identities" by construction, associate strongly with cell differentiation states. This association is not expected if cell differentiation is, in effect, regulated by epigenetic mechanisms. Based on these results, I propose a general, falsifiable theory of individuated multicellularity, which relies on the synergistic coupling across the extracellular space of two explicitly uncorrelated "self-organizing" systems constraining histone modification states at the same sites. This theory describes how the simplest multicellular individual-understood as an intrinsic, higher-order constraint-emerges from proliferating undifferentiated cells, and could explain the intrinsic regulation of gene transcriptional changes for cell differentiation and the evolution of individuated multicellular organisms.
基因表达的变化被认为通过复杂的表观遗传机制在本质上调节细胞分化过程。然而,从根本上来说,这种假定的调节仅指基因表达变化的复杂传播,否则会导致无法解释的倒退。个体化多细胞生物的发育自我调节动力学和进化也缺乏统一且可证伪的描述。为了填补这一空白,我对公开可用的不同人类、小鼠和果蝇细胞类型/发育阶段样本的组蛋白H3翻译后修饰和mRNA丰度的高通量数据进行了计算分析。我对转录起始位点附近的基因组区域进行分析,通过控制每个细胞类型/发育阶段数据集各自mRNA水平的组蛋白修饰之间的成对偏相关性生成了一个图谱。我发现,这些图谱虽然在构建时明确与各自的转录“身份”不相关,但与细胞分化状态密切相关。如果细胞分化实际上是由表观遗传机制调节的,那么这种关联是出乎意料的。基于这些结果,我提出了一个关于个体化多细胞性的通用且可证伪的理论,该理论依赖于两个明确不相关的“自组织”系统在细胞外空间的协同耦合,这两个系统在相同位点约束组蛋白修饰状态。这个理论描述了最简单的多细胞个体——被理解为一种内在的高阶约束——是如何从增殖的未分化细胞中出现的,并可以解释细胞分化过程中基因转录变化的内在调节以及个体化多细胞生物的进化。