Suppr超能文献

用于癌症生存预测的通路结构预测模型:一种两阶段方法。

Pathway-Structured Predictive Model for Cancer Survival Prediction: A Two-Stage Approach.

作者信息

Zhang Xinyan, Li Yan, Akinyemiju Tomi, Ojesina Akinyemi I, Buckhaults Phillip, Liu Nianjun, Xu Bo, Yi Nengjun

机构信息

Department of Biostatistics, University of Alabama at Birmingham, Alabama 35294.

Department of Epidemiology, University of Alabama at Birmingham, Alabama 35294.

出版信息

Genetics. 2017 Jan;205(1):89-100. doi: 10.1534/genetics.116.189191. Epub 2016 Nov 9.

Abstract

Heterogeneity in terms of tumor characteristics, prognosis, and survival among cancer patients has been a persistent problem for many decades. Currently, prognosis and outcome predictions are made based on clinical factors and/or by incorporating molecular profiling data. However, inaccurate prognosis and prediction may result by using only clinical or molecular information directly. One of the main shortcomings of past studies is the failure to incorporate prior biological information into the predictive model, given strong evidence of the pathway-based genetic nature of cancer, i.e., the potential for oncogenes to be grouped into pathways based on biological functions such as cell survival, proliferation, and metastatic dissemination. To address this problem, we propose a two-stage approach to incorporate pathway information into the prognostic modeling using large-scale gene expression data. In the first stage, we fit all predictors within each pathway using the penalized Cox model and Bayesian hierarchical Cox model. In the second stage, we combine the cross-validated prognostic scores of all pathways obtained in the first stage as new predictors to build an integrated prognostic model for prediction. We apply the proposed method to analyze two independent breast and ovarian cancer datasets from The Cancer Genome Atlas (TCGA), predicting overall survival using large-scale gene expression profiling data. The results from both datasets show that the proposed approach not only improves survival prediction compared with the alternative analyses that ignore the pathway information, but also identifies significant biological pathways.

摘要

几十年来,癌症患者在肿瘤特征、预后和生存率方面的异质性一直是个持续存在的问题。目前,预后和结局预测是基于临床因素和/或通过纳入分子谱数据来进行的。然而,仅直接使用临床或分子信息可能会导致预后和预测不准确。过去研究的主要缺点之一是未能将先前的生物学信息纳入预测模型,鉴于有强有力的证据表明癌症具有基于通路的遗传本质,即癌基因有可能根据细胞存活、增殖和转移扩散等生物学功能被归类到通路中。为了解决这个问题,我们提出一种两阶段方法,利用大规模基因表达数据将通路信息纳入预后建模。在第一阶段,我们使用惩罚Cox模型和贝叶斯分层Cox模型对每个通路内的所有预测因子进行拟合。在第二阶段,我们将在第一阶段获得的所有通路的交叉验证预后分数作为新的预测因子进行组合,以构建一个用于预测的综合预后模型。我们应用所提出的方法分析来自癌症基因组图谱(TCGA)的两个独立的乳腺癌和卵巢癌数据集,使用大规模基因表达谱数据预测总生存期。两个数据集的结果均表明,与忽略通路信息的其他分析相比,所提出的方法不仅改善了生存预测,还识别出了重要的生物学通路。

相似文献

3
Novel gene signatures for prognosis prediction in ovarian cancer.新型基因标志物用于预测卵巢癌的预后。
J Cell Mol Med. 2020 Sep;24(17):9972-9984. doi: 10.1111/jcmm.15601. Epub 2020 Jul 14.
6
Mixture classification model based on clinical markers for breast cancer prognosis.基于临床标志物的乳腺癌预后混合分类模型。
Artif Intell Med. 2010 Feb-Mar;48(2-3):129-37. doi: 10.1016/j.artmed.2009.07.008. Epub 2009 Dec 14.

引用本文的文献

2
Construct prognostic models of multiple myeloma with pathway information incorporated.构建包含通路信息的多发性骨髓瘤预后模型。
PLoS Comput Biol. 2024 Sep 10;20(9):e1012444. doi: 10.1371/journal.pcbi.1012444. eCollection 2024 Sep.
6
Learning-based Cancer Treatment Outcome Prognosis using Multimodal Biomarkers.使用多模态生物标志物基于学习的癌症治疗结果预后分析
IEEE Trans Radiat Plasma Med Sci. 2022 Feb;6(2):231-244. doi: 10.1109/trpms.2021.3104297. Epub 2021 Aug 12.

本文引用的文献

4
A new initiative on precision medicine.一项关于精准医学的新倡议。
N Engl J Med. 2015 Feb 26;372(9):793-5. doi: 10.1056/NEJMp1500523. Epub 2015 Jan 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验