Pang Panjiao, Yang Ye, Li Jing, Wang Zhong, Cao Weiguo, Xie Wei
School of Pharmaceutical Sciences, The Sun Yat-Sen University, 132 E. Circle Rd. University City, Guangzhou, Guangdong 510006, People's Republic of China.
Department of Genetics and Biochemistry, Clemson University, 190 Collings Street, Clemson, SC 29634, U.S.A.
Biochem J. 2017 Mar 7;474(6):923-938. doi: 10.1042/BCJ20160934.
Base deamination is a common type of DNA damage that occurs in all organisms. DNA repair mechanisms are essential to maintain genome integrity, in which the base excision repair (BER) pathway plays a major role in the removal of base damage. In the BER pathway, the uracil DNA glycosylase superfamily is responsible for excising the deaminated bases from DNA and generates apurinic/apyrimidinic (AP) sites. Using bioinformatics tools, we identified a family 3 SMUG1-like DNA glycoyslase from (named Phe SMUG2), which displays catalytic activities towards DNA containing uracil or hypoxanthine/xanthine. Phylogenetic analyses show that SMUG2 enzymes are closely related to family 3 SMUG1s but belong to a distinct branch of the family. The high-resolution crystal structure of the apoenzyme reveals that the general fold of Phe SMUG2 resembles SMUG1s, yet with several distinct local structural differences. Mutational studies, coupled with structural modeling, identified several important amino acid residues for glycosylase activity. Substitution of G65 with a tyrosine results in loss of all glycosylase activity. The crystal structure of the G65Y mutant suggests a potential misalignment at the active site due to the mutation. The relationship between the new subfamily and other families in the UDG superfamily is discussed. The present study provides new mechanistic insight into the molecular mechanism of the UDG superfamily.
碱基脱氨基是一种在所有生物体中都会发生的常见DNA损伤类型。DNA修复机制对于维持基因组完整性至关重要,其中碱基切除修复(BER)途径在去除碱基损伤方面发挥着主要作用。在BER途径中,尿嘧啶DNA糖基化酶超家族负责从DNA中切除脱氨基碱基并产生无嘌呤/无嘧啶(AP)位点。我们使用生物信息学工具从[具体来源未给出]中鉴定出一种3类SMUG1样DNA糖基化酶(命名为Phe SMUG2),它对含有尿嘧啶或次黄嘌呤/黄嘌呤的DNA具有催化活性。系统发育分析表明,SMUG2酶与3类SMUG1密切相关,但属于该家族的一个独特分支。脱辅酶的高分辨率晶体结构表明,Phe SMUG2的总体折叠结构与SMUG1相似,但存在几个明显的局部结构差异。突变研究结合结构建模,确定了几个对糖基化酶活性重要的氨基酸残基。将G65替换为酪氨酸会导致所有糖基化酶活性丧失。G65Y突变体的晶体结构表明,由于该突变,活性位点可能存在错位。本文讨论了这个新亚家族与UDG超家族中其他家族的关系。本研究为UDG超家族的分子机制提供了新的机制性见解。