Doria-Rose Nicole A, Altae-Tran Han R, Roark Ryan S, Schmidt Stephen D, Sutton Matthew S, Louder Mark K, Chuang Gwo-Yu, Bailer Robert T, Cortez Valerie, Kong Rui, McKee Krisha, O'Dell Sijy, Wang Felicia, Abdool Karim Salim S, Binley James M, Connors Mark, Haynes Barton F, Martin Malcolm A, Montefiori David C, Morris Lynn, Overbaugh Julie, Kwong Peter D, Mascola John R, Georgiev Ivelin S
Vaccine Research Center, National Institutes of Health, Bethesda, MD, United States of America.
Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America.
PLoS Pathog. 2017 Jan 4;13(1):e1006148. doi: 10.1371/journal.ppat.1006148. eCollection 2017 Jan.
Computational neutralization fingerprinting, NFP, is an efficient and accurate method for predicting the epitope specificities of polyclonal antibody responses to HIV-1 infection. Here, we present next-generation NFP algorithms that substantially improve prediction accuracy for individual donors and enable serologic analysis for entire cohorts. Specifically, we developed algorithms for: (a) selection of optimized virus neutralization panels for NFP analysis, (b) estimation of NFP prediction confidence for each serum sample, and (c) identification of sera with potentially novel epitope specificities. At the individual donor level, the next-generation NFP algorithms particularly improved the ability to detect multiple epitope specificities in a sample, as confirmed both for computationally simulated polyclonal sera and for samples from HIV-infected donors. Specifically, the next-generation NFP algorithms detected multiple specificities in twice as many samples of simulated sera. Further, unlike the first-generation NFP, the new algorithms were able to detect both of the previously confirmed antibody specificities, VRC01-like and PG9-like, in donor CHAVI 0219. At the cohort level, analysis of ~150 broadly neutralizing HIV-infected donor samples suggested a potential connection between clade of infection and types of elicited epitope specificities. Most notably, while 10E8-like antibodies were observed in infections from different clades, an enrichment of such antibodies was predicted for clade B samples. Ultimately, such large-scale analyses of antibody responses to HIV-1 infection can help guide the design of epitope-specific vaccines that are tailored to take into account the prevalence of infecting clades within a specific geographic region. Overall, the next-generation NFP technology will be an important tool for the analysis of broadly neutralizing polyclonal antibody responses against HIV-1.
计算中和指纹图谱(NFP)是一种高效且准确的方法,用于预测针对HIV-1感染的多克隆抗体反应的表位特异性。在此,我们展示了新一代NFP算法,该算法大幅提高了对个体供体的预测准确性,并能够对整个队列进行血清学分析。具体而言,我们开发了用于以下方面的算法:(a)选择用于NFP分析的优化病毒中和面板,(b)估计每个血清样本的NFP预测置信度,以及(c)识别具有潜在新表位特异性的血清。在个体供体水平上,新一代NFP算法尤其提高了检测样本中多种表位特异性的能力,这在计算模拟的多克隆血清以及来自HIV感染供体的样本中均得到证实。具体来说,新一代NFP算法在两倍数量的模拟血清样本中检测到多种特异性。此外,与第一代NFP不同,新算法能够在供体CHAVI 0219中检测到先前已确认的两种抗体特异性,即VRC01样和PG9样。在队列水平上,对约150份广泛中和的HIV感染供体样本的分析表明,感染分支与引发的表位特异性类型之间可能存在联系。最值得注意的是,虽然在不同分支的感染中都观察到了10E8样抗体,但预测B分支样本中此类抗体更为富集。最终,这种对HIV-1感染抗体反应的大规模分析有助于指导设计针对特定地理区域内感染分支流行情况进行定制的表位特异性疫苗。总体而言,新一代NFP技术将成为分析针对HIV-1的广泛中和多克隆抗体反应的重要工具。