Suppr超能文献

全局 Mittag-Leffler 分数阶忆阻神经网络稳定性分析。

Global Mittag-Leffler Stabilization of Fractional-Order Memristive Neural Networks.

出版信息

IEEE Trans Neural Netw Learn Syst. 2017 Jan;28(1):206-217. doi: 10.1109/TNNLS.2015.2506738. Epub 2015 Dec 22.

Abstract

According to conventional memristive neural network theories, neurodynamic properties are powerful tools for solving many problems in the areas of brain-like associative learning, dynamic information storage or retrieval, etc. However, as have often been noted in most fractional-order systems, system analysis approaches for integral-order systems could not be directly extended and applied to deal with fractional-order systems, and consequently, it raises difficult issues in analyzing and controlling the fractional-order memristive neural networks. By using the set-valued maps and fractional-order differential inclusions, then aided by a newly proposed fractional derivative inequality, this paper investigates the global Mittag-Leffler stabilization for a class of fractional-order memristive neural networks. Two types of control rules (i.e., state feedback stabilizing control and output feedback stabilizing control) are designed for the stabilization of fractional-order memristive neural networks, while a list of stabilization criteria is established. Finally, two numerical examples are given to show the effectiveness and characteristics of the obtained theoretical results.

摘要

根据传统的忆阻神经网络理论,神经动力学特性是解决类脑联想学习、动态信息存储或检索等领域许多问题的有力工具。然而,正如在大多数分数阶系统中经常指出的那样,对于整数阶系统的系统分析方法不能直接扩展和应用于处理分数阶系统,因此,在分析和控制分数阶忆阻神经网络方面提出了困难的问题。本文利用集值映射和分数阶微分包含,并借助新提出的分数阶导数不等式,研究了一类分数阶忆阻神经网络的全局 Mittag-Leffler 稳定性。针对分数阶忆阻神经网络的稳定性设计了两种控制规则(即状态反馈稳定控制和输出反馈稳定控制),并建立了一组稳定化准则。最后,给出了两个数值例子来说明所得到的理论结果的有效性和特点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验