Suppr超能文献

具有非线性耦合的多个忆阻神经网络的有限时间和固定时间镇定

Finite-time and fixed-time stabilization of multiple memristive neural networks with nonlinear coupling.

作者信息

Yang Chao, Liu Yicheng, Huang Lihong

机构信息

Department of Mathematics and Computer Science, Changsha University, Changsha, Hunan 410002 China.

Department of Mathematics, National University of Defense Technology, Changsha, 410073 China.

出版信息

Cogn Neurodyn. 2022 Dec;16(6):1471-1483. doi: 10.1007/s11571-021-09778-8. Epub 2022 Mar 17.

Abstract

This brief presents the finite-time stabilization and fixed-time stabilization of multiple memristor-based neural networks (MMNNs) with nonlinear coupling. Under the retarded memristive theory, the generalized Lyapunov functional method, extended Filippov-framework and Laplacian matrix theory, we can realize both the finite-time stabilization and fixed-time stabilization problem of MMNNs by designing novel state-feedback controller and the corresponding adaptive controller with regulate parameters. Moreover, we assess the bounds of settling time for the both two kinds of stabilization respectively, and we deeply analyze the influence of initial desiring values and the linear growth condition of the controller on the system. Finally, the benefits of the proposed approach and the experimental analysis are demonstrated by numerical examples.

摘要

本文介绍了具有非线性耦合的多个基于忆阻器的神经网络(MMNNs)的有限时间稳定和固定时间稳定。在延迟忆阻理论、广义李雅普诺夫泛函方法、扩展菲利波夫框架和拉普拉斯矩阵理论的基础上,通过设计新颖的状态反馈控制器和具有调节参数的相应自适应控制器,我们可以实现MMNNs的有限时间稳定和固定时间稳定问题。此外,我们分别评估了两种稳定方式的调节时间界限,并深入分析了初始期望值和控制器的线性增长条件对系统的影响。最后,通过数值例子证明了所提方法的优点和实验分析。

相似文献

1
Finite-time and fixed-time stabilization of multiple memristive neural networks with nonlinear coupling.
Cogn Neurodyn. 2022 Dec;16(6):1471-1483. doi: 10.1007/s11571-021-09778-8. Epub 2022 Mar 17.
2
Finite-Time Stabilization of Delayed Memristive Neural Networks: Discontinuous State-Feedback and Adaptive Control Approach.
IEEE Trans Neural Netw Learn Syst. 2018 Apr;29(4):856-868. doi: 10.1109/TNNLS.2017.2651023. Epub 2017 Jan 25.
4
Finite-Time Stabilization and Adaptive Control of Memristor-Based Delayed Neural Networks.
IEEE Trans Neural Netw Learn Syst. 2017 Nov;28(11):2648-2659. doi: 10.1109/TNNLS.2016.2598598.
6
Fixed-time synchronization of coupled memristor-based neural networks with time-varying delays.
Neural Netw. 2019 Aug;116:101-109. doi: 10.1016/j.neunet.2019.04.008. Epub 2019 Apr 9.
7
Finite-time stabilization control for discontinuous time-delayed networks: New switching design.
Neural Netw. 2016 Mar;75:84-96. doi: 10.1016/j.neunet.2015.11.009. Epub 2015 Dec 17.
8
Finite-Time and Fixed-Time Synchronization of Coupled Memristive Neural Networks With Time Delay.
IEEE Trans Cybern. 2021 Jun;51(6):2944-2955. doi: 10.1109/TCYB.2019.2953236. Epub 2021 May 18.
9
Finite-time synchronization for memristor-based neural networks with time-varying delays.
Neural Netw. 2015 Sep;69:20-8. doi: 10.1016/j.neunet.2015.04.015. Epub 2015 May 11.
10
Finite-time and fixed-time synchronization analysis of inertial memristive neural networks with time-varying delays.
Cogn Neurodyn. 2018 Feb;12(1):121-134. doi: 10.1007/s11571-017-9455-z. Epub 2017 Sep 21.

引用本文的文献

1
Influences of time delay and connection topology on a multi-delay inertial neural system.
Cogn Neurodyn. 2024 Apr;18(2):615-630. doi: 10.1007/s11571-023-10012-w. Epub 2023 Oct 18.

本文引用的文献

1
Fixed-time synchronization of coupled memristor-based neural networks with time-varying delays.
Neural Netw. 2019 Aug;116:101-109. doi: 10.1016/j.neunet.2019.04.008. Epub 2019 Apr 9.
2
Fixed-time stability of dynamical systems and fixed-time synchronization of coupled discontinuous neural networks.
Neural Netw. 2017 May;89:74-83. doi: 10.1016/j.neunet.2017.02.001. Epub 2017 Feb 17.
3
Finite-Time Stabilization of Delayed Memristive Neural Networks: Discontinuous State-Feedback and Adaptive Control Approach.
IEEE Trans Neural Netw Learn Syst. 2018 Apr;29(4):856-868. doi: 10.1109/TNNLS.2017.2651023. Epub 2017 Jan 25.
4
Discontinuous Observers Design for Finite-Time Consensus of Multiagent Systems With External Disturbances.
IEEE Trans Neural Netw Learn Syst. 2017 Nov;28(11):2826-2830. doi: 10.1109/TNNLS.2016.2599199.
5
Finite-Time Stabilization and Adaptive Control of Memristor-Based Delayed Neural Networks.
IEEE Trans Neural Netw Learn Syst. 2017 Nov;28(11):2648-2659. doi: 10.1109/TNNLS.2016.2598598.
6
Global Mittag-Leffler Stabilization of Fractional-Order Memristive Neural Networks.
IEEE Trans Neural Netw Learn Syst. 2017 Jan;28(1):206-217. doi: 10.1109/TNNLS.2015.2506738. Epub 2015 Dec 22.
7
A new switching control for finite-time synchronization of memristor-based recurrent neural networks.
Neural Netw. 2017 Feb;86:1-9. doi: 10.1016/j.neunet.2016.10.008. Epub 2016 Nov 4.
8
New results on exponential synchronization of memristor-based neural networks with discontinuous neuron activations.
Neural Netw. 2016 Dec;84:161-171. doi: 10.1016/j.neunet.2016.09.003. Epub 2016 Sep 10.
9
Exponential Stability of Complex-Valued Memristive Recurrent Neural Networks.
IEEE Trans Neural Netw Learn Syst. 2017 Mar;28(3):766-771. doi: 10.1109/TNNLS.2015.2513001. Epub 2016 Jan 6.
10
Finite-time synchronization of fractional-order memristor-based neural networks with time delays.
Neural Netw. 2016 Jan;73:36-46. doi: 10.1016/j.neunet.2015.09.012. Epub 2015 Oct 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验