Cox S J, Graner F, Mosseri R, Sadoc J-F
Department of Mathematics, Aberystwyth University, SY23 3BZ, United Kingdom.
J Phys Condens Matter. 2017 Mar 22;29(11):114001. doi: 10.1088/1361-648X/aa5712. Epub 2017 Jan 5.
We present a numerical study of quasiperiodic foams, in which the bubbles are generated as duals of quasiperiodic Frank-Kasper phases. These foams are investigated as potential candidates to the celebrated Kelvin problem for the partition of three-dimensional space with equal volume bubbles and minimal surface area. Interestingly, one of the computed structures falls close to (but still slightly above) the best known Weaire-Phelan periodic candidate. In addition we find a correlation between the normalized bubble surface area and the root mean squared deviation of the number of faces, giving an additional clue to understanding the main geometrical ingredients driving the Kelvin problem.
我们给出了准周期泡沫的数值研究,其中气泡是作为准周期弗兰克 - 卡斯帕相的对偶生成的。这些泡沫被研究作为解决著名的开尔文问题的潜在候选方案,该问题是用等体积气泡和最小表面积对三维空间进行划分。有趣的是,计算得到的结构之一接近(但仍略高于)最著名的韦尔 - 费伦周期性候选结构。此外,我们发现归一化气泡表面积与面数的均方根偏差之间存在相关性,这为理解驱动开尔文问题的主要几何要素提供了额外线索。