Neuroeconomics, Reward, and Decision-making group, Institut des Sciences Cognitives Marc Jeannerod, Centre National pour la Recherche Scientifique, 69675 Bron, France.
Département de Biologie Humaine, University of Lyon 1, 69622 Villeurbanne, France.
Cereb Cortex. 2018 Feb 1;28(2):585-601. doi: 10.1093/cercor/bhw396.
Current neural models of value-based decision-making consider choices as a 2-stage process, proceeding from the "valuation" of each option under consideration to the "selection" of the best option on the basis of their subjective values. However, little is known about the computational mechanisms at play at the selection stage and its implementation in the human brain. Here, we used drift-diffusion models combined with model-based functional magnetic resonance imaging, effective connectivity, and multivariate pattern analysis to characterize the neuro-computational architecture of value-based decisions. We found that 2 key drift-diffusion computations at the selection stage, namely integration and choice readout, engage distinct brain regions, with the dorsolateral prefrontal cortex integrating a decision value signal computed in the ventromedial prefrontal cortex, and the posterior parietal cortex reading out choice outcomes. Our findings suggest that this prefronto-parietal network acts as a hub implementing behavioral selection through a distributed drift-diffusion process.
当前基于价值的决策的神经模型将选择视为一个两阶段的过程,从对每个考虑中的选项的“评估”到根据其主观价值对最佳选项的“选择”。然而,关于选择阶段的计算机制及其在人类大脑中的实现知之甚少。在这里,我们使用漂移扩散模型结合基于模型的功能磁共振成像、有效连通性和多元模式分析来描述基于价值的决策的神经计算结构。我们发现,选择阶段的 2 个关键漂移扩散计算,即整合和选择读出,涉及不同的大脑区域,背外侧前额叶皮层整合了腹内侧前额叶皮层计算的决策价值信号,而顶后皮层读出选择结果。我们的发现表明,这个前额顶叶网络作为一个枢纽,通过分布式漂移扩散过程实现行为选择。