Centro de Investigación en Computación, Instituto Politécnico Nacional (CIC-IPN), Avenida Juan de Dios Bátiz, Esq. Miguel Othón de Mendizábal, Col. Nueva Industrial Vallejo, Delegación Gustavo A. Madero, 07738 Ciudad de México, Mexico.
Comput Intell Neurosci. 2016;2016:4642052. doi: 10.1155/2016/4642052. Epub 2016 Dec 13.
The Artificial Neural Network (ANN) concept is familiar in methods whose task is, for example, the identification or approximation of the outputs of complex systems difficult to model. In general, the objective is to determine online the adequate parameters to reach a better point-to-point convergence rate, so that this paper presents the parameter estimation for an equivalent ANN (EANN), obtaining a recursive identification for a stochastic system, firstly, with constant parameters and, secondly, with nonstationary output system conditions. Therefore, in the last estimation, the parameters also have stochastic properties, making the traditional approximation methods not adequate due to their losing of convergence rate. In order to give a solution to this problematic, we propose a nonconstant exponential forgetting factor (NCEFF) with sliding modes, obtaining in almost all points an exponential convergence rate decreasing. Theoretical results of both identification stages are performed using MATLAB® and compared, observing improvement when the new proposal for nonstationary output conditions is applied.
人工神经网络(ANN)的概念在方法中很常见,这些方法的任务例如是识别或逼近复杂系统的输出,这些系统很难建模。通常,目标是在线确定合适的参数以达到更好的逐点收敛速度,因此本文提出了等效 ANN(EANN)的参数估计,为随机系统进行递归识别,首先是具有恒定参数,其次是具有非平稳输出系统条件。因此,在最后一次估计中,参数也具有随机特性,这使得传统的近似方法由于收敛速度的丧失而不合适。为了解决这个问题,我们提出了一种具有滑模的非恒定指数遗忘因子(NCEFF),在几乎所有点都得到了递减的指数收敛速度。使用 MATLAB®进行了两个识别阶段的理论结果,并进行了比较,观察到在应用新的非平稳输出条件的建议时有所改进。