Aguilar Cruz Karen Alicia, Medel Juárez José de Jesús, Fernández Muñoz José Luis, Esmeralda Vigueras Velázquez Midory
Centro de Investigación en Computación, Instituto Politécnico Nacional (CIC-IPN), Avenida Juan de Dios Bátiz, Esq. Miguel Othón de Mendizábal, Col. Nueva Industrial Vallejo, Delegación Gustavo A. Madero, 07738 Ciudad de México, DF, Mexico.
Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada U. Legaria, Instituto Politécnico Nacional (CICATA-Legaria-IPN), Calzada Legaria 649, Col. Irrigación, Delegación Miguel Hidalgo, 11500 Ciudad de México, DF, Mexico.
Comput Intell Neurosci. 2016;2016:1690924. doi: 10.1155/2016/1690924. Epub 2016 Jun 5.
A model of an Equivalent Artificial Neural Net (EANN) describes the gains set, viewed as parameters in a layer, and this consideration is a reproducible process, applicable to a neuron in a neural net (NN). The EANN helps to estimate the NN gains or parameters, so we propose two methods to determine them. The first considers a fuzzy inference combined with the traditional Kalman filter, obtaining the equivalent model and estimating in a fuzzy sense the gains matrix A and the proper gain K into the traditional filter identification. The second develops a direct estimation in state space, describing an EANN using the expected value and the recursive description of the gains estimation. Finally, a comparison of both descriptions is performed; highlighting the analytical method describes the neural net coefficients in a direct form, whereas the other technique requires selecting into the Knowledge Base (KB) the factors based on the functional error and the reference signal built with the past information of the system.
等效人工神经网络(EANN)模型描述了增益集,将其视为一层中的参数,并且这种考虑是一个可重复的过程,适用于神经网络(NN)中的神经元。EANN有助于估计神经网络的增益或参数,因此我们提出了两种确定它们的方法。第一种方法考虑将模糊推理与传统卡尔曼滤波器相结合,获得等效模型,并在模糊意义上估计传统滤波器识别中的增益矩阵A和适当增益K。第二种方法在状态空间中进行直接估计,使用增益估计的期望值和递归描述来描述EANN。最后,对两种描述进行了比较;突出显示解析方法以直接形式描述神经网络系数,而另一种技术需要根据功能误差和利用系统过去信息构建的参考信号在知识库(KB)中选择因素。