Grebenkov Denis S
Laboratoire de Physique de la Matière Condensée (UMR 7643), CNRS-Ecole Polytechnique, University Paris-Saclay, 91128 Palaiseau, France.
Phys Rev Lett. 2016 Dec 23;117(26):260201. doi: 10.1103/PhysRevLett.117.260201.
We derive a general exact formula for the mean first passage time (MFPT) from a fixed point inside a planar domain to an escape region on its boundary. The underlying mixed Dirichlet-Neumann boundary value problem is conformally mapped onto the unit disk, solved exactly, and mapped back. The resulting formula for the MFPT is valid for an arbitrary space-dependent diffusion coefficient, while the leading logarithmic term is explicit, simple, and remarkably universal. In contrast to earlier works, we show that the natural small parameter of the problem is the harmonic measure of the escape region, not its perimeter. The conventional scaling of the MFPT with the area of the domain is altered when diffusing particles are released near the escape region. These findings change the current view of escape problems and related chemical or biochemical kinetics in complex, multiscale, porous or fractal domains, while the fundamental relation to the harmonic measure opens new ways of computing and interpreting MFPTs.
我们推导了一个关于平均首次通过时间(MFPT)的通用精确公式,该公式描述了从平面区域内的一个固定点到其边界上的逃逸区域的平均首次通过时间。相关的混合狄利克雷 - 诺伊曼边值问题通过共形映射到单位圆盘,精确求解后再映射回来。所得的MFPT公式对于任意空间依赖的扩散系数都是有效的,而主导对数项是明确、简单且非常通用的。与早期工作不同的是,我们表明该问题的自然小参数是逃逸区域的调和测度,而非其周长。当扩散粒子在逃逸区域附近释放时,MFPT与区域面积的传统标度关系会发生改变。这些发现改变了当前对复杂、多尺度、多孔或分形区域中的逃逸问题以及相关化学或生化动力学的看法,而与调和测度的基本关系开辟了计算和解释MFPT的新途径。