Suppr超能文献

高维基因组数据中 SNP 相互作用检测方法的研究综述。

A Review on Methods for Detecting SNP Interactions in High-Dimensional Genomic Data.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2018 Mar-Apr;15(2):599-612. doi: 10.1109/TCBB.2016.2635125. Epub 2016 Dec 2.

Abstract

In this era of genome-wide association studies (GWAS), the quest for understanding the genetic architecture of complex diseases is rapidly increasing more than ever before. The development of high throughput genotyping and next generation sequencing technologies enables genetic epidemiological analysis of large scale data. These advances have led to the identification of a number of single nucleotide polymorphisms (SNPs) responsible for disease susceptibility. The interactions between SNPs associated with complex diseases are increasingly being explored in the current literature. These interaction studies are mathematically challenging and computationally complex. These challenges have been addressed by a number of data mining and machine learning approaches. This paper reviews the current methods and the related software packages to detect the SNP interactions that contribute to diseases. The issues that need to be considered when developing these models are addressed in this review. The paper also reviews the achievements in data simulation to evaluate the performance of these models. Further, it discusses the future of SNP interaction analysis.

摘要

在全基因组关联研究(GWAS)的时代,对复杂疾病遗传结构的理解需求比以往任何时候都在迅速增加。高通量基因分型和下一代测序技术的发展使得对大规模数据的遗传流行病学分析成为可能。这些进展导致了许多与疾病易感性相关的单核苷酸多态性(SNP)的鉴定。目前的文献中越来越多地探讨了与复杂疾病相关的 SNP 之间的相互作用。这些相互作用研究在数学上具有挑战性,计算上也很复杂。许多数据挖掘和机器学习方法已经解决了这些挑战。本文综述了当前用于检测导致疾病的 SNP 相互作用的方法和相关软件包。本文还讨论了 SNP 相互作用分析的未来。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验