Suppr超能文献

如何在没有力钳的情况下测量单个运动分子的负载依赖性动力学。

How to Measure Load-Dependent Kinetics of Individual Motor Molecules Without a Force-Clamp.

作者信息

Sung J, Mortensen K I, Spudich J A, Flyvbjerg H

机构信息

Department of Cellular and Molecular Pharmacology, The Howard Hughes Medical Institute, University of California, San Francisco, CA, United States.

Department of Micro- and Nanotechnology, Technical University of Denmark, Kongens Lyngby, Denmark.

出版信息

Methods Enzymol. 2017;582:1-29. doi: 10.1016/bs.mie.2016.08.002. Epub 2016 Oct 31.

Abstract

Single-molecule force spectroscopy techniques, including optical trapping, magnetic trapping, and atomic force microscopy, have provided unprecedented opportunities to understand biological processes at the smallest biological length scales. For example, they have been used to elucidate the molecular basis of muscle contraction and intracellular cargo transport along cytoskeletal filamentous proteins. Optical trapping is among the most sophisticated single-molecule techniques. With exceptionally high spatial and temporal resolutions, it has been extensively utilized to understand biological functions at the single molecule level, such as conformational changes and force-generation of individual motor proteins or force-dependent kinetics in molecular interactions. Here, we describe a new method, "Harmonic Force Spectroscopy (HFS)." With a conventional dual-beam optical trap and a simple harmonic oscillation of the sample stage, HFS can measure the load-dependent kinetics of transient molecular interactions, such as a human β-cardiac myosin II interacting with an actin filament. We demonstrate that the ADP release rate of an individual human β-cardiac myosin II molecule depends exponentially on the applied load, which provides a clue to understanding the molecular mechanism behind the force-velocity curve of a contracting cardiac muscle. The experimental protocol and the data analysis are simple, fast, and efficient. This chapter provides a practical guide to the method: basic concepts, experimental setup, step-by-step experimental protocol, theory, data analysis, and results.

摘要

单分子力谱技术,包括光镊技术、磁镊技术和原子力显微镜技术,为在最小的生物长度尺度上理解生物过程提供了前所未有的机会。例如,它们已被用于阐明肌肉收缩和细胞内货物沿细胞骨架丝状蛋白运输的分子基础。光镊技术是最复杂的单分子技术之一。凭借其极高的空间和时间分辨率,它已被广泛用于在单分子水平上理解生物功能,例如单个运动蛋白的构象变化和力产生,或分子相互作用中与力相关的动力学。在此,我们描述一种新方法,即“谐波力谱(HFS)”。利用传统的双光束光镊和样品台的简谐振荡,HFS能够测量瞬态分子相互作用的负载依赖动力学,例如人类β - 心脏肌球蛋白II与肌动蛋白丝的相互作用。我们证明,单个人类β - 心脏肌球蛋白II分子的ADP释放速率与所施加的负载呈指数关系,这为理解收缩心肌的力 - 速度曲线背后的分子机制提供了线索。实验方案和数据分析简单、快速且高效。本章为该方法提供了实用指南:基本概念、实验装置、详细的实验步骤、理论、数据分析及结果。

相似文献

引用本文的文献

1
One must reconstitute the functions of interest from purified proteins.必须从纯化的蛋白质中重建相关功能。
Front Physiol. 2024 May 17;15:1390186. doi: 10.3389/fphys.2024.1390186. eCollection 2024.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验