Sheff Joey G, Farshidfar Farshad, Bathe Oliver F, Kopciuk Karen, Gentile Francesco, Tuszynski Jack, Barakat Khaled, Schriemer David C
From the ‡Department of Chemistry, University of Calgary, Calgary, Alberta, Canada.
§Department of Surgery, University of Calgary, Calgary, Alberta, Canada.
Mol Cell Proteomics. 2017 Mar;16(3):428-437. doi: 10.1074/mcp.M116.064246. Epub 2017 Jan 5.
The mitotic kinesin Eg5 is an important target in cancer chemotherapy. A structurally diverse collection of canonical loop L5 inhibitors engage an allosteric pathway that includes elements of its microtubule binding region. However, recent evidence suggests that Eg5 may permit alternative allosteric mechanisms. Terpendole E, a natural-product Eg5 inhibitor, is active against mutants resistant to canonical loop L5 inhibitors and appears to offer a unique mode of inhibition. To investigate the variety of inhibitor responses, the structure-function properties of eighteen kinesin inhibitors were quantified with hydrogen-exchange mass spectrometry (HX-MS), functional analysis and molecular modeling. A unique strategy for high-density data analysis was implemented, based on a scalable multivariate statistical method, as current HX-MS routines have a limited capacity to guide a characterization of ligands when additional functional data is available. Inhibitor evaluation was achieved using orthogonal partial least squares projection to latent structures discriminant analysis (OPLS-DA). The strategy generated a model that identified functionally-significant conformational elements involved in kinesin inhibition, confirming the canonical allosteric pathway and identifying a novel response pathway. Terpendole E is demonstrated to be an atypical L5 site inhibitor, where binding induces an allosteric effect mediated by a destabilization in the β-sheet core of the molecular motor, an element involved in mechanochemical coupling for structurally-related kinesins. The analysis suggests that a different approach to inhibitor development may be fruitful.
有丝分裂驱动蛋白Eg5是癌症化疗中的一个重要靶点。一系列结构多样的典型环L5抑制剂通过一条变构途径发挥作用,该途径包括其微管结合区域的一些元件。然而,最近的证据表明,Eg5可能存在其他变构机制。天然产物Eg5抑制剂特喷多醇E对耐典型环L5抑制剂的突变体具有活性,并且似乎提供了一种独特的抑制模式。为了研究抑制剂反应的多样性,采用氢交换质谱(HX-MS)、功能分析和分子建模对18种驱动蛋白抑制剂的结构-功能特性进行了量化。基于一种可扩展的多元统计方法,实施了一种独特的高密度数据分析策略,因为当有额外的功能数据时,当前的HX-MS程序指导配体表征的能力有限。使用正交偏最小二乘判别分析(OPLS-DA)进行抑制剂评估。该策略生成了一个模型,该模型确定了参与驱动蛋白抑制的功能上重要的构象元件,证实了典型的变构途径并确定了一条新的反应途径。特喷多醇E被证明是一种非典型的L5位点抑制剂,其结合诱导了一种变构效应,该效应由分子马达β折叠核心的不稳定介导,β折叠核心是与结构相关的驱动蛋白的机械化学偶联所涉及的一个元件。分析表明,一种不同的抑制剂开发方法可能会取得成果。