Suppr超能文献

利用小分子界面结合分子破坏结核分枝杆菌 H37Rv 中过氧化物酶-硫氧还蛋白复合物的氧化还原催化功能。

Disruption of redox catalytic functions of peroxiredoxin-thioredoxin complex in Mycobacterium tuberculosis H37Rv using small interface binding molecules.

机构信息

Computational Biology Laboratory, Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong 793022, Meghalaya, India.

Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302, West Bengal, India.

出版信息

Comput Biol Chem. 2017 Apr;67:69-83. doi: 10.1016/j.compbiolchem.2016.12.013. Epub 2016 Dec 31.

Abstract

Mycobacterium tuberculosis has distinctive ability to detoxify various microbicidal superoxides and hydroperoxides via a redox catalytic cycle involving thiol reductants of peroxiredoxin (Prx) and thioredoxin (Trx) systems which has conferred on it resistance against oxidative killing and survivability within host. We have used computational approach to disrupt catalytic functions of Prx-Trx complex which can possibly render the pathogen vulnerable to oxidative killing in the host. Using protein-protein docking method, we have successfully constructed the Prx-Trx complex. Statistics of interface region revealed contact area of each monomer less than 1500Å and enriched in polar amino acids indicating transient interaction between Prx and Trx. We have identified ZINC40139449 as a potent interface binding molecule through virtual screening of drug-like compounds from ZINC database. Molecular dynamics (MD) simulation studies showed differences in structural properties of Prx-Trx complex both in apo and ligand bound states with regard to root mean square deviation (RMSD), radius of gyration (Rg), root mean square fluctuations (RMSF), solvent accessible surface area (SASA) and number of hydrogen bonds (NHBs). Interestingly, we found stability of two conserved catalytic residues Cys61 and Cys174 of Prx and conserved catalytic motif, WCXXC of Trx upon binding of ZINC40139449. The time dependent displacement study reveals that the compound is quite stable in the interface binding region till 30ns of MD simulation. The structural properties were further validated by principal component analysis (PCA). We report ZINC40139449 as promising lead which can be further evaluated by in vitro or in vivo enzyme inhibition assays.

摘要

结核分枝杆菌具有独特的解毒各种微生物超氧化物和过氧化物的能力,通过涉及过氧化物酶 (Prx) 和硫氧还蛋白 (Trx) 系统的巯基还原剂的氧化还原催化循环,这使其具有抗氧化杀伤和在宿主内存活的能力。我们使用计算方法来破坏 Prx-Trx 复合物的催化功能,这可能使病原体容易受到宿主中氧化杀伤。通过蛋白质-蛋白质对接方法,我们成功构建了 Prx-Trx 复合物。界面区域的统计数据显示每个单体的接触面积小于 1500Å,富含极性氨基酸,表明 Prx 和 Trx 之间存在瞬时相互作用。我们通过从 ZINC 数据库中筛选药物样化合物,鉴定出 ZINC40139449 作为一种有效的界面结合分子。分子动力学 (MD) 模拟研究表明,在apo 和配体结合状态下,Prx-Trx 复合物的结构特性存在差异,包括均方根偏差 (RMSD)、回转半径 (Rg)、均方根波动 (RMSF)、溶剂可及表面积 (SASA) 和氢键数量 (NHBs)。有趣的是,我们发现 Prx 的两个保守催化残基 Cys61 和 Cys174 以及 Trx 的保守催化基序 WCXXC 在结合 ZINC40139449 时的稳定性。时间相关位移研究表明,该化合物在 MD 模拟 30ns 内非常稳定在界面结合区域。结构特性进一步通过主成分分析 (PCA) 进行验证。我们报告 ZINC40139449 是一种有前途的先导化合物,可以通过体外或体内酶抑制试验进一步评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验