Greco Chad T, Muir Victoria G, Epps Thomas H, Sullivan Millicent O
Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA; Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA.
Acta Biomater. 2017 Mar 1;50:407-416. doi: 10.1016/j.actbio.2017.01.003. Epub 2017 Jan 4.
Two of the most prominent challenges that limit the clinical success of siRNA therapies are a lack of control over cargo release from the delivery vehicle and an incomplete understanding of the link between gene silencing dynamics and siRNA dosing. Herein, we address these challenges through the formulation of siRNA polyplexes containing light-responsive polymer mixtures, whose varied compositions and triggered release behavior provide enhanced gene silencing and controlled dose responses that can be predicted by simple kinetic models. Through the straightforward mixing of two block copolymers, the level of gene knockdown was easily optimized to achieve the maximum level of GAPDH protein silencing in NIH/3T3 cells (~70%) using a single siRNA dose. The kinetic model was used to describe the dynamic changes in mRNA and protein concentrations in response to siRNA treatment. These predictions enabled the application of a second dose of siRNA to maximally suppress gene expression over multiple days, leading to a further 50% reduction in protein levels relative to those measured following a single dose. Furthermore, polyplexes remained dormant in cells until exposed to the photo-stimulus, demonstrating the complete control over siRNA activity as well as the stability of the nanocarriers. Thus, this work demonstrates that pairing advances in biomaterials design with simple kinetic modeling provides new insight into gene silencing dynamics and presents a powerful strategy to control gene expression through siRNA delivery.
Our manuscript describes two noteworthy impacts: (1) we designed mixed polymer formulations to enhance gene silencing, and (2) we simultaneously developed a simple kinetic model for determining optimal siRNA dose responses to maintain silencing over several days. These advances address critical challenges in siRNA delivery and provide new opportunities in therapeutics development. The structure-function relationships prevalent in these formulations were established to enable tuning and forecasting of nanocarrier efficiency a priori, leading to siRNA dosing regimens able to maximally suppress gene expression. Our advances are significant because the mixed polymer formulations provide a straightforward and scalable approach to tailor siRNA delivery regimens. Moreover, the implementation of accurate dosing frameworks addresses a major knowledge gap that has hindered clinical implementation of siRNA.
限制siRNA疗法临床成功的两个最突出挑战是缺乏对递送载体中货物释放的控制以及对基因沉默动力学与siRNA剂量之间联系的不完全理解。在此,我们通过制备含有光响应聚合物混合物的siRNA多聚体来应对这些挑战,其不同的组成和触发释放行为提供了增强的基因沉默和可控的剂量反应,这些反应可以通过简单的动力学模型预测。通过直接混合两种嵌段共聚物,使用单一siRNA剂量,基因敲低水平很容易优化,以在NIH/3T3细胞中实现GAPDH蛋白沉默的最大水平(约70%)。动力学模型用于描述响应siRNA处理时mRNA和蛋白质浓度的动态变化。这些预测使得能够应用第二剂siRNA在多天内最大程度地抑制基因表达,导致蛋白质水平相对于单剂量后测量的水平进一步降低50%。此外,多聚体在细胞中保持休眠状态,直到受到光刺激,这证明了对siRNA活性的完全控制以及纳米载体的稳定性。因此,这项工作表明,将生物材料设计的进展与简单的动力学建模相结合,为基因沉默动力学提供了新的见解,并提出了一种通过siRNA递送控制基因表达的强大策略。
我们的手稿描述了两个值得注意的影响:(1)我们设计了混合聚合物配方以增强基因沉默,(2)我们同时开发了一个简单的动力学模型,用于确定最佳siRNA剂量反应,以在几天内维持沉默。这些进展解决了siRNA递送中的关键挑战,并为治疗开发提供了新的机会。在这些配方中建立了普遍存在的结构-功能关系,以便能够先验地调整和预测纳米载体效率,从而产生能够最大程度抑制基因表达的siRNA给药方案。我们的进展意义重大,因为混合聚合物配方提供了一种直接且可扩展的方法来定制siRNA递送方案。此外,准确给药框架的实施解决了一个阻碍siRNA临床应用的主要知识空白。