Gardner Michael, Heinz Robert, Wang Jianying, Mitchum Melissa G
Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211.
Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
G3 (Bethesda). 2017 Mar 10;7(3):835-841. doi: 10.1534/g3.116.035964.
The soybean cyst nematode (SCN) is a major threat to soybean production, made more challenging by the current limitations of natural resistance for managing this pathogen. The use of resistant host cultivars is effective, but, over time, results in the generation of virulent nematode populations able to robustly parasitize the resistant host. In order to understand how virulence develops in SCN, we utilized a single backcross BCF strategy to mate a highly virulent inbred population (TN20), capable of reproducing on all current sources of resistance, with an avirulent one (PA3), unable to reproduce on any of the resistant soybean lines. The offspring were then investigated to determine how virulence is inherited on the main sources of SCN resistance, derived from soybean lines Peking, PI 88788, PI 90763, and the broad spectrum resistance source PI 437654. Significantly, our results suggest virulence on PI 437654 is a multigenic recessive trait that allows the nematode to reproduce on all current sources of resistance. In addition, we examined how virulence on different sources of resistance interact by placing virulent SCN populations under secondary selection, and identified a strong counter-selection between virulence on PI 88788- and PI 90763-derived resistances, while no such counter-selection existed between virulence on Peking and PI 88788 resistance sources. Our results suggest that the genes responsible for virulence on PI 88788 and PI 90763 may be different alleles at a common locus. If so, rotation of cultivars with resistance from these two sources may be an effective management protocol.
大豆胞囊线虫(SCN)是大豆生产的主要威胁,由于目前在管理这种病原体方面天然抗性存在局限性,使得应对这一威胁更具挑战性。使用抗性寄主品种是有效的,但随着时间的推移,会导致产生能够强力寄生抗性寄主的毒性线虫种群。为了了解SCN的毒性是如何发展的,我们采用了单回交BCF策略,将一个能够在所有当前抗性来源上繁殖的高毒性自交系种群(TN20)与一个在任何抗性大豆品系上都不能繁殖的无毒种群(PA3)进行杂交。然后对后代进行研究,以确定SCN抗性的主要来源(源自大豆品系北京、PI 88788、PI 90763和广谱抗性来源PI 437654)上的毒性是如何遗传的。值得注意的是,我们的结果表明,对PI 437654的毒性是一种多基因隐性性状,这使得线虫能够在所有当前的抗性来源上繁殖。此外,我们通过对毒性SCN种群进行二次选择,研究了不同抗性来源上的毒性是如何相互作用的,并确定了对PI 88788和PI 90763衍生抗性的毒性之间存在强烈的反选择,而在北京和PI 88788抗性来源的毒性之间不存在这种反选择。我们的结果表明,负责对PI 88788和PI 90763产生毒性的基因可能是同一基因座上的不同等位基因。如果是这样,轮作具有来自这两个来源抗性的品种可能是一种有效的管理方案。