Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, Québec, Canada.
Département de phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Québec, QC, Canada, G1V 0A6.
Phytopathology. 2021 Jan;111(1):137-148. doi: 10.1094/PHYTO-08-20-0348-FI. Epub 2020 Dec 14.
Soybean cyst nematode (SCN) is one of the most important diseases in soybean. Currently, the main management strategy relies on planting resistant cultivars. However, the overuse of a single resistance source has led to the selection of virulent SCN populations, although the mechanisms by which the nematode overcomes the resistance genes remain unknown. In this study, we used a nematode-adapted single-cell RNA-seq approach to identify SCN genes potentially involved in resistance breakdown in Peking and PI 88788 parental soybean lines. We established for the first time the full transcriptome of single SCN individuals allowing us to identify a list of putative virulence genes against both major SCN resistance sources. Our analysis identified 48 differentially expressed putative effectors (secreted proteins required for infection) alongside 40 effectors showing evidence of novel structural variants, and 11 effector genes containing phenotype-specific sequence polymorphisms. Additionally, a differential expression analysis revealed an interesting phenomenon of coexpressed gene regions with some containing putative effectors. The selection of virulent SCN individuals on Peking resulted in a profoundly altered transcriptome, especially for genes known to be involved in parasitism. Several sequence polymorphisms were also specific to these virulent nematodes and could potentially play a role in the acquisition of nematode virulence. On the other hand, the transcriptome of virulent individuals on PI 88788 was very similar to avirulent ones with the exception of a few genes, which suggest a distinct virulence strategy to Peking.
大豆胞囊线虫(SCN)是大豆最重要的病害之一。目前,主要的管理策略依赖于种植抗性品种。然而,单一抗性来源的过度使用导致了毒力 SCN 种群的选择,尽管线虫克服抗性基因的机制尚不清楚。在这项研究中,我们使用了一种适应线虫的单细胞 RNA-seq 方法来鉴定可能参与 Peking 和 PI 88788 亲本大豆品系中抗性崩溃的 SCN 基因。我们首次建立了单个 SCN 个体的完整转录组,使我们能够鉴定出针对两种主要 SCN 抗性来源的推定毒力基因列表。我们的分析确定了 48 个差异表达的推定效应子(感染所需的分泌蛋白)以及 40 个表现出新型结构变异证据的效应子,以及 11 个含有表型特异性序列多态性的效应子基因。此外,差异表达分析揭示了一个有趣的现象,即一些包含推定效应子的共表达基因区域。在 Peking 上选择毒力 SCN 个体导致转录组发生深刻变化,特别是对已知参与寄生的基因。这些毒力线虫还具有一些特定的序列多态性,可能在获得线虫毒力方面发挥作用。另一方面,PI 88788 上毒力个体的转录组与非毒力个体非常相似,除了少数基因外,这表明它们具有与 Peking 不同的毒力策略。