Guttman Shani, Sapir Zvi, Ocko Benjamin M, Deutsch Moshe, Sloutskin Eli
Physics Department and Institute of Nanotechnology, Bar-Ilan University , Ramat-Gan 5290002, Israel.
NSLS-II, Brookhaven National Laboratory , Upton, New York 11973, United States.
Langmuir. 2017 Feb 7;33(5):1305-1314. doi: 10.1021/acs.langmuir.6b02926. Epub 2017 Jan 23.
Recent extensive studies reveal that surfactant-stabilized spherical alkane emulsion droplets spontaneously adopt polyhedral shapes upon cooling below a temperature T while remaining liquid. Further cooling induces the growth of tails and spontaneous droplet splitting. Two mechanisms were offered to account for these intriguing effects. One assigns the effects to the formation of an intradroplet frame of tubules consisting of crystalline rotator phases with cylindrically curved lattice planes. The second assigns the sphere-to-polyhedron transition to the buckling of defects in a crystalline interfacial monolayer, known to form in these systems at some T > T. The buckling reduces the extensional energy of the crystalline monolayer's defects, unavoidably formed when wrapping a spherical droplet by a hexagonally packed interfacial monolayer. The tail growth, shape changes, and droplet splitting were assigned to the decrease and vanishing of surface tension, γ. Here we present temperature-dependent γ(T), optical microscopy measurements, and interfacial entropy determinations for several alkane/surfactant combinations. We demonstrate the advantages and accuracy of the in situ γ(T) measurements made simultaneously with the microscopy measurements on the same droplet. The in situ and coinciding ex situ Wilhelmy plate γ(T) measurements confirm the low interfacial tension, ≲0.1 mN/m, observed at T. Our results provide strong quantitative support validating the crystalline monolayer buckling mechanism.
最近的广泛研究表明,表面活性剂稳定的球形烷烃乳液液滴在冷却至温度T以下时会自发地变成多面体形状,同时保持液态。进一步冷却会导致尾部生长和液滴自发分裂。提出了两种机制来解释这些有趣的现象。一种机制将这些现象归因于由具有圆柱弯曲晶格平面的结晶旋转相组成的液滴内小管框架的形成。第二种机制将球体到多面体的转变归因于在高于T的某个温度下在这些系统中形成的结晶界面单层中缺陷的屈曲。这种屈曲降低了结晶单层缺陷的拉伸能,当用六边形堆积的界面单层包裹球形液滴时不可避免地会形成这些缺陷。尾部生长、形状变化和液滴分裂归因于表面张力γ的降低和消失。在这里,我们展示了几种烷烃/表面活性剂组合的随温度变化的γ(T)、光学显微镜测量结果和界面熵测定。我们证明了与在同一液滴上进行的显微镜测量同时进行原位γ(T)测量的优势和准确性。原位和同步的异位威尔海姆板γ(T)测量证实了在温度T时观察到的低界面张力,约为0.1 mN/m。我们的结果提供了有力的定量支持,验证了结晶单层屈曲机制。