Simoncini David, Schiex Thomas, Zhang Kam Y J
INRA MIAT, UR 875, Castanet-Tolosan Cedex, 31326, France.
Structural Bioinformatics Team, Division of Structural and Synthetic Biology, Center for Life Science Technologies, RIKEN, 1-7-22 Suehiro, Yokohama, Kanagawa, 230-0045, Japan.
Proteins. 2017 May;85(5):852-858. doi: 10.1002/prot.25244. Epub 2017 Mar 3.
Conformational search space exploration remains a major bottleneck for protein structure prediction methods. Population-based meta-heuristics typically enable the possibility to control the search dynamics and to tune the balance between local energy minimization and search space exploration. EdaFold is a fragment-based approach that can guide search by periodically updating the probability distribution over the fragment libraries used during model assembly. We implement the EdaFold algorithm as a Rosetta protocol and provide two different probability update policies: a cluster-based variation (EdaRose ) and an energy-based one (EdaRose ). We analyze the search dynamics of our new Rosetta protocols and show that EdaRose is able to provide predictions with lower C αRMSD to the native structure than EdaRose and Rosetta AbInitio Relax protocol. Our software is freely available as a C++ patch for the Rosetta suite and can be downloaded from http://www.riken.jp/zhangiru/software/. Our protocols can easily be extended in order to create alternative probability update policies and generate new search dynamics. Proteins 2017; 85:852-858. © 2016 Wiley Periodicals, Inc.
构象搜索空间探索仍然是蛋白质结构预测方法的一个主要瓶颈。基于种群的元启发式算法通常能够控制搜索动态,并调整局部能量最小化和搜索空间探索之间的平衡。EdaFold是一种基于片段的方法,它可以通过定期更新模型组装过程中使用的片段库上的概率分布来指导搜索。我们将EdaFold算法实现为一种Rosetta协议,并提供两种不同的概率更新策略:基于聚类的变体(EdaRose )和基于能量的策略(EdaRose )。我们分析了我们新的Rosetta协议的搜索动态,结果表明,与EdaRose和Rosetta AbInitio Relax协议相比,EdaRose能够提供与天然结构具有更低CαRMSD的预测。我们的软件作为Rosetta套件的C++补丁免费提供,可从http://www.riken.jp/zhangiru/software/下载。我们的协议可以很容易地扩展,以创建替代的概率更新策略并生成新的搜索动态。《蛋白质》2017年;85:852 - 858。©2016威利期刊公司。