Suppr超能文献

基于分布估计算法的片段式蛋白质结构预测中的有效采样。

Efficient sampling in fragment-based protein structure prediction using an estimation of distribution algorithm.

机构信息

Zhang Initiative Research Unit, Institute Laboratories, RIKEN, Wako, Saitama, Japan.

出版信息

PLoS One. 2013 Jul 25;8(7):e68954. doi: 10.1371/journal.pone.0068954. Print 2013.

Abstract

Fragment assembly is a powerful method of protein structure prediction that builds protein models from a pool of candidate fragments taken from known structures. Stochastic sampling is subsequently used to refine the models. The structures are first represented as coarse-grained models and then as all-atom models for computational efficiency. Many models have to be generated independently due to the stochastic nature of the sampling methods used to search for the global minimum in a complex energy landscape. In this paper we present EdaFold(AA), a fragment-based approach which shares information between the generated models and steers the search towards native-like regions. A distribution over fragments is estimated from a pool of low energy all-atom models. This iteratively-refined distribution is used to guide the selection of fragments during the building of models for subsequent rounds of structure prediction. The use of an estimation of distribution algorithm enabled EdaFold(AA) to reach lower energy levels and to generate a higher percentage of near-native models. [Formula: see text] uses an all-atom energy function and produces models with atomic resolution. We observed an improvement in energy-driven blind selection of models on a benchmark of EdaFold(AA) in comparison with the [Formula: see text] AbInitioRelax protocol.

摘要

片段组装是一种强大的蛋白质结构预测方法,它从已知结构的候选片段池中构建蛋白质模型。然后使用随机采样来优化模型。这些结构首先被表示为粗粒模型,然后为了提高计算效率被表示为全原子模型。由于用于在复杂能量景观中搜索全局最小值的采样方法具有随机性,因此必须独立生成许多模型。在本文中,我们提出了基于片段的 EdaFold(AA)方法,该方法在生成的模型之间共享信息,并引导搜索向天然区域。从一组低能量的全原子模型中估计片段的分布。这种迭代细化的分布用于指导在后续结构预测轮次中构建模型时选择片段。使用分布估计算法使 EdaFold(AA)能够达到更低的能量水平并生成更高比例的近天然模型。[公式:见文本]使用全原子能量函数,并生成具有原子分辨率的模型。我们观察到,与[公式:见文本]AbInitioRelax 协议相比,在基准 EdaFold(AA)上进行能量驱动的模型盲目选择时,性能得到了提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df36/3723781/703972085836/pone.0068954.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验