Dong Yu-Wei, Fan Rui-Qing, Chen Wei, Zhang Hui-Jie, Song Yang, Du Xi, Wang Ping, Wei Li-Guo, Yang Yu-Lin
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
Dalton Trans. 2017 Jan 24;46(4):1266-1276. doi: 10.1039/c6dt04159k.
A series of Zn(ii) complexes with different conjugated systems, [ZnL1Cl] (Zn1), [ZnL2Cl] (Zn2), [Zn(L3)]·(ClO) (Zn3), [ZnL4Cl] (Zn4), and [ZnL5Cl] (Zn5), were synthesized and subsequently characterized via single crystal X-ray diffraction, H and C NMR, FT-IR, elemental analyses, melting point, and PXRD. The X-ray diffraction analyses revealed that the supramolecular frameworks of complexes Zn1-Zn5 are constructed by C-HO/Cl hydrogen bonds and ππ interactions. Complexes Zn1-Zn3 feature 3D 6-connected {4·6} topological structures, whereas complex Zn4 exhibits a 3D 7-connected supramolecular framework with a {4·6} topological structure. However, complex Zn5 shows one-dimensional "wave-like" chains. Based on these varied structures, the emission maximum wavelengths of complexes Zn1-Zn5 can be tuned in a wide range of 461-592 nm due to the red shift direction of λ caused by different conjugated systems and their electron donating abilities. Complex Zn3 shows a strong luminescence in the solid state and in the acetonitrile solution. Therefore, a series of Zn3-poly(methylmethacrylate) (Zn3-PMMA) hybrid materials were obtained by controlling the concentration of complex Zn3 in poly(methylmethacrylate) (PMMA). At an optimal concentration of 4%, the doped polymer film of Zn3-PMMA displays strong green luminescence emissions that are 19-fold in the luminescence intensities and 98 °C higher in the thermal stability temperature compared to the Zn3 film.
合成了一系列具有不同共轭体系的锌(II)配合物,即[ZnL1Cl](Zn1)、[ZnL2Cl](Zn2)、[Zn(L3)]·(ClO)(Zn3)、[ZnL4Cl](Zn4)和[ZnL5Cl](Zn5),随后通过单晶X射线衍射、氢核磁共振和碳核磁共振、傅里叶变换红外光谱、元素分析、熔点和粉末X射线衍射对其进行了表征。X射线衍射分析表明,配合物Zn1-Zn5的超分子框架是由C-HO/Cl氢键和π-π相互作用构建而成的。配合物Zn1-Zn3具有三维6连接的{4·6}拓扑结构,而配合物Zn4呈现出具有{4·6}拓扑结构的三维7连接超分子框架。然而,配合物Zn5显示出一维“波浪状”链。基于这些不同的结构,由于不同共轭体系及其给电子能力导致的λ红移方向,配合物Zn1-Zn5的发射最大波长可在461-592 nm的宽范围内调节。配合物Zn3在固态和乙腈溶液中均表现出强烈的发光。因此,通过控制聚甲基丙烯酸甲酯(PMMA)中配合物Zn3的浓度,获得了一系列Zn3-聚甲基丙烯酸甲酯(Zn3-PMMA)杂化材料。在最佳浓度为4%时,Zn3-PMMA的掺杂聚合物薄膜显示出强烈的绿色发光发射,其发光强度是Zn3薄膜的19倍,热稳定性温度比Zn3薄膜高98℃。