1Department of Animal Science,Universidade Federal de Viçosa,Av. P.H. Rolfs,s/n°,Viçosa,Minas Gerais,36570-900,Brazil.
2Department of Animal Sciences and Industry,Kansas State University,Manhattan,KS 66506-1600,USA.
Animal. 2017 Aug;11(8):1303-1311. doi: 10.1017/S1751731116002822. Epub 2017 Jan 10.
In ruminants, urea recycling is considered an evolutionary advantage. The amount of urea recycled mainly depends of the nitrogen (N) intake and the amount of organic matter (OM) digested in the rumen. Because recycled N contributes to meeting microbial N requirements, accurate estimates of urea recycling can improve the understanding of efficiency of N utilization and N losses to the environment. The objective of this study was to evaluate urea kinetics and microbial usage of recycled urea N in ruminants using a meta-analytical approach. Treatment mean values were compiled from 25 studies with ruminants (beef cattle, dairy cows and sheep) which were published from 2001 to 2016, totalling 107 treatment means. The data set was analyzed according to meta-analysis techniques using linear or non-linear mixed models, taking into account the random variations among experiments. Urea N synthesized in the liver (UER) and urea N recycled to the gut (GER) linearly increased (P<0.001) as N intake (g/BW0.75) increased, with increases corresponding to 71.5% and 35.2% of N intake, respectively. The UER was positively associated (P<0.05) with dietary CP concentration and the ratio of CP to digestible OM (CP:DOM). Maximum curvature analyses identified 17% dietary CP as the point where there was a prominent increase in hepatic synthesis of urea N, likely due to an excess of dietary N leading to greater ammonia absorption. The GER:UER decreased with increasing dietary CP concentration (P<0.05). At dietary CP⩾19%, GER:UER reached near minimal values. The fraction of UER eliminated as urinary urea N and the contribution of urea N to total urinary N were positively associated with dietary CP (P<0.05), both reaching values near the plateau when dietary CP was 17%. The fractions of GER excreted in the feces and utilized for anabolism decreased, whereas the fraction of GER returned to the ornithine cycle increased with dietary CP concentration (P<0.05). Recycled urea N assimilated by ruminal microbes (as a fraction of GER) decreased as dietary CP and CP:DOM increased (P<0.05). The efficiency of microbial assimilation of recycled urea N was near plateau values at 194 g CP/kg DOM. The models obtained in this study contribute to the knowledge on N utilization, and they could be used in feeding models to predict urea recycling and thus to improve formulation of diets to reduce N losses that contribute to air and water pollution.
在反刍动物中,尿素循环被认为是一种进化优势。尿素的循环量主要取决于氮(N)的摄入量和瘤胃中有机物(OM)的消化量。因为循环 N 有助于满足微生物 N 的需求,所以准确估计尿素循环可以提高对 N 利用效率和 N 向环境损失的理解。本研究的目的是使用荟萃分析方法评估反刍动物中尿素动力学和微生物对循环尿素 N 的利用。通过线性或非线性混合模型分析了从 2001 年至 2016 年发表的 25 项针对反刍动物(肉牛、奶牛和绵羊)的研究中获得的 107 个处理平均值,这些研究共计获得了 107 个处理平均值。考虑到实验之间的随机变化,根据荟萃分析技术分析了数据集。尿素 N 在肝脏中的合成(UER)和尿素 N 循环回肠道(GER)随 N 摄入量(BW0.75 克/克)的增加呈线性增加(P<0.001),分别对应于 N 摄入量的 71.5%和 35.2%。UER 与日粮 CP 浓度和 CP 与可消化 OM(CP:DOM)的比例呈正相关(P<0.05)。最大曲率分析确定 17%的日粮 CP 是肝脏合成尿素 N 显著增加的关键点,可能是由于日粮 N 过量导致氨吸收增加。GER:UER 随日粮 CP 浓度的增加而降低(P<0.05)。在日粮 CP ⩾19%时,GER:UER 接近最小值。UER 作为尿尿素 N 排泄和尿素 N 对总尿 N 的贡献与日粮 CP 呈正相关(P<0.05),当日粮 CP 为 17%时,两者均接近平台值。随着日粮 CP 浓度的增加,GER 在粪便中的排泄部分和用于合成代谢的部分减少,而返回鸟氨酸循环的 GER 部分增加(P<0.05)。瘤胃微生物同化的循环尿素 N (作为 GER 的一部分)随着日粮 CP 和 CP:DOM 的增加而减少(P<0.05)。微生物对循环尿素 N 的同化效率在 194 g CP/kg DOM 时接近平台值。本研究获得的模型有助于了解 N 利用情况,可用于饲养模型中预测尿素循环,从而改进饲料配方,减少导致空气和水污染的 N 损失。