Suppr超能文献

RecQ解旋酶沿DNA穿梭并对D环进行定向加工,支持同源重组的质量控制。

Shuttling along DNA and directed processing of D-loops by RecQ helicase support quality control of homologous recombination.

作者信息

Harami Gábor M, Seol Yeonee, In Junghoon, Ferencziová Veronika, Martina Máté, Gyimesi Máté, Sarlós Kata, Kovács Zoltán J, Nagy Nikolett T, Sun Yuze, Vellai Tibor, Neuman Keir C, Kovács Mihály

机构信息

Department of Biochemistry, Eötvös Loránd University-Hungarian Academy of Sciences "Momentum" Motor Enzymology Research Group, Eötvös Loránd University, H-1117 Budapest, Hungary.

Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892.

出版信息

Proc Natl Acad Sci U S A. 2017 Jan 24;114(4):E466-E475. doi: 10.1073/pnas.1615439114. Epub 2017 Jan 9.

Abstract

Cells must continuously repair inevitable DNA damage while avoiding the deleterious consequences of imprecise repair. Distinction between legitimate and illegitimate repair processes is thought to be achieved in part through differential recognition and processing of specific noncanonical DNA structures, although the mechanistic basis of discrimination remains poorly defined. Here, we show that Escherichia coli RecQ, a central DNA recombination and repair enzyme, exhibits differential processing of DNA substrates based on their geometry and structure. Through single-molecule and ensemble biophysical experiments, we elucidate how the conserved domain architecture of RecQ supports geometry-dependent shuttling and directed processing of recombination-intermediate [displacement loop (D-loop)] substrates. Our study shows that these activities together suppress illegitimate recombination in vivo, whereas unregulated duplex unwinding is detrimental for recombination precision. Based on these results, we propose a mechanism through which RecQ helicases achieve recombination precision and efficiency.

摘要

细胞必须持续修复不可避免的DNA损伤,同时避免不精确修复带来的有害后果。尽管区分的机制基础仍不清楚,但人们认为,合法与非法修复过程之间的区分部分是通过对特定非经典DNA结构的差异识别和处理来实现的。在这里,我们表明,大肠杆菌RecQ(一种核心的DNA重组和修复酶)根据DNA底物的几何形状和结构,对其进行差异处理。通过单分子和整体生物物理实验,我们阐明了RecQ保守的结构域结构如何支持依赖几何形状的穿梭以及对重组中间体[置换环(D环)]底物的定向处理。我们的研究表明,这些活动共同抑制了体内的非法重组,而不受调控的双链解旋对重组精度是有害的。基于这些结果,我们提出了一种RecQ解旋酶实现重组精度和效率的机制。

相似文献

9
Mutual inhibition of RecQ molecules in DNA unwinding.RecQ 分子在 DNA 解旋中的相互抑制。
J Biol Chem. 2010 May 21;285(21):15884-93. doi: 10.1074/jbc.M110.104299. Epub 2010 Mar 15.

引用本文的文献

3
Molecular insights into the prototypical single-stranded DNA-binding protein from .从. 中获得的典型单链 DNA 结合蛋白的分子见解。
Crit Rev Biochem Mol Biol. 2024 Feb-Apr;59(1-2):99-127. doi: 10.1080/10409238.2024.2330372. Epub 2024 May 21.

本文引用的文献

4
Mechanics and Single-Molecule Interrogation of DNA Recombination.DNA 重组的力学与单分子检测。
Annu Rev Biochem. 2016 Jun 2;85:193-226. doi: 10.1146/annurev-biochem-060614-034352. Epub 2016 Apr 18.
8
Structural mechanisms of DNA binding and unwinding in bacterial RecQ helicases.细菌RecQ解旋酶中DNA结合与解旋的结构机制。
Proc Natl Acad Sci U S A. 2015 Apr 7;112(14):4292-7. doi: 10.1073/pnas.1416746112. Epub 2015 Mar 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验