Harami Gábor M, Seol Yeonee, In Junghoon, Ferencziová Veronika, Martina Máté, Gyimesi Máté, Sarlós Kata, Kovács Zoltán J, Nagy Nikolett T, Sun Yuze, Vellai Tibor, Neuman Keir C, Kovács Mihály
Department of Biochemistry, Eötvös Loránd University-Hungarian Academy of Sciences "Momentum" Motor Enzymology Research Group, Eötvös Loránd University, H-1117 Budapest, Hungary.
Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892.
Proc Natl Acad Sci U S A. 2017 Jan 24;114(4):E466-E475. doi: 10.1073/pnas.1615439114. Epub 2017 Jan 9.
Cells must continuously repair inevitable DNA damage while avoiding the deleterious consequences of imprecise repair. Distinction between legitimate and illegitimate repair processes is thought to be achieved in part through differential recognition and processing of specific noncanonical DNA structures, although the mechanistic basis of discrimination remains poorly defined. Here, we show that Escherichia coli RecQ, a central DNA recombination and repair enzyme, exhibits differential processing of DNA substrates based on their geometry and structure. Through single-molecule and ensemble biophysical experiments, we elucidate how the conserved domain architecture of RecQ supports geometry-dependent shuttling and directed processing of recombination-intermediate [displacement loop (D-loop)] substrates. Our study shows that these activities together suppress illegitimate recombination in vivo, whereas unregulated duplex unwinding is detrimental for recombination precision. Based on these results, we propose a mechanism through which RecQ helicases achieve recombination precision and efficiency.
细胞必须持续修复不可避免的DNA损伤,同时避免不精确修复带来的有害后果。尽管区分的机制基础仍不清楚,但人们认为,合法与非法修复过程之间的区分部分是通过对特定非经典DNA结构的差异识别和处理来实现的。在这里,我们表明,大肠杆菌RecQ(一种核心的DNA重组和修复酶)根据DNA底物的几何形状和结构,对其进行差异处理。通过单分子和整体生物物理实验,我们阐明了RecQ保守的结构域结构如何支持依赖几何形状的穿梭以及对重组中间体[置换环(D环)]底物的定向处理。我们的研究表明,这些活动共同抑制了体内的非法重组,而不受调控的双链解旋对重组精度是有害的。基于这些结果,我们提出了一种RecQ解旋酶实现重组精度和效率的机制。