Suppr超能文献

用于心房颤动卒中预防的计算机化抗血栓形成风险评估工具版本2(CARATV2.0)的试点项目。

Pilot of a Computerised Antithrombotic Risk Assessment Tool Version 2 (CARATV2.0) for stroke prevention in atrial fibrillation.

作者信息

Wang Yishen, Bajorek Beata

机构信息

Graduate School of Health- Pharmacy, University of Technology Sydney1 NSW, AUSTRALIA.

出版信息

Cardiol J. 2017;24(2):176-187. doi: 10.5603/CJ.a2017.0003. Epub 2017 Jan 10.

Abstract

BACKGROUND

The decision-making process for stroke prevention in atrial fibrillation (AF) requires a comprehensive assessment of risk vs. benefit and an appropriate selection of antithrombotic agents (e.g., warfarin, non-vitamin K antagonist oral anticoagulants [NOACs]). The aim of this pilot-test was to examine the impact of a customised decision support tool - the Computerised Antithrombotic Risk Assessment Tool (CARATV2.0) using antithrombotic therapy on a cohort of patients with AF.

METHODS

In this prospective interventional study, 251 patients with AF aged ≥ 65 years, admitted to a teaching hospital in Australia were recruited. CARATV2.0 generated treatment recommendations based on patient medical information. Recommendations were provided to prescribers for consideration.

RESULTS

At baseline (admission), 30.3% of patients were prescribed warfarin, 26.7% an antiplatelet, 8.4% apixaban, 8.0% rivaroxaban, 3.6% dabigatran. CARATV2.0 recommended a change of therapy for 153 (61.0%) patients. Through recommendations of CARATV2.0, at discharge, 40.2% of patients were prescribed warfarin, 17.7% antiplatelet, 14.3% apixaban, 10.4% rivaroxaban, 5.6% dabigatran. Overall, the proportion of patients receiving an antithrombotic on discharge increased significantly from baseline (admission) (baseline 77.2% vs. 89.2%; p < 0.001). Prescribers moderately agreed with CARATV2.0's recommendations (kappa = 0.275, p < 0.001). Practical medication safety issues were cited as major reasons for not accepting a desire to continue therapy with CARATV2.0's recommendations. Factors predicting the prescription of antiplatelets rather than anticoagulants included higher bleeding risk and high risk of falls. An inter-speciality difference in therapy selection was detected.

CONCLUSIONS

This decision support tool can help optimise the use of antithrombotic therapy in patients with AF by considering risk versus benefit profiles and rationalising treatment selection. (Cardiol J 2017; 24, 2: 176-187).

摘要

背景

心房颤动(AF)患者预防中风的决策过程需要对风险与获益进行全面评估,并合理选择抗血栓药物(如华法林、非维生素K拮抗剂口服抗凝药[NOACs])。这项初步测试的目的是研究一种定制的决策支持工具——使用抗血栓治疗的计算机化抗血栓风险评估工具(CARATV2.0)对一组AF患者的影响。

方法

在这项前瞻性干预研究中,招募了251名年龄≥65岁、入住澳大利亚一家教学医院的AF患者。CARATV2.0根据患者的医疗信息生成治疗建议,并提供给开处方者以供参考。

结果

在基线(入院)时,30.3%的患者被开具华法林,26.7%的患者使用抗血小板药物,8.4%的患者使用阿哌沙班,8.0%的患者使用利伐沙班,3.6%的患者使用达比加群。CARATV2.0建议153名(61.0%)患者更改治疗方案。通过CARATV2.0的建议,出院时,40.2%的患者被开具华法林,17.7%的患者使用抗血小板药物,14.3%的患者使用阿哌沙班,10.4%的患者使用利伐沙班,5.6%的患者使用达比加群。总体而言,出院时接受抗血栓治疗的患者比例较基线(入院)时显著增加(基线77.2% vs. 89.2%;p < 0.001)。开处方者对CARATV2.0的建议中度认同(kappa = 0.275,p < 0.001)。实际用药安全问题被列为不接受按照CARATV2.0建议继续治疗的主要原因。预测使用抗血小板药物而非抗凝药物的因素包括较高的出血风险和高跌倒风险。检测到治疗选择存在专科间差异。

结论

该决策支持工具通过考虑风险与获益情况并使治疗选择合理化,有助于优化AF患者抗血栓治疗的使用。(《心脏病学杂志》2017年;24卷,第2期:176 - 187页)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验