Suppr超能文献

预测致病变体的严重程度。

Predicting Severity of Disease-Causing Variants.

作者信息

Niroula Abhishek, Vihinen Mauno

机构信息

Department of Experimental Medical Science, Lund University, Lund, SE-22184, Sweden.

出版信息

Hum Mutat. 2017 Apr;38(4):357-364. doi: 10.1002/humu.23173. Epub 2017 Jan 24.

Abstract

Most diseases, including those of genetic origin, express a continuum of severity. Clinical interventions for numerous diseases are based on the severity of the phenotype. Predicting severity due to genetic variants could facilitate diagnosis and choice of therapy. Although computational predictions have been used as evidence for classifying the disease relevance of genetic variants, special tools for predicting disease severity in large scale are missing. Here, we manually curated a dataset containing variants leading to severe and less severe phenotypes and studied the abilities of variation impact predictors to distinguish between them. We found that these tools cannot separate the two groups of variants. Then, we developed a novel machine-learning-based method, PON-PS (http://structure.bmc.lu.se/PON-PS), for the classification of amino acid substitutions associated with benign, severe, and less severe phenotypes. We tested the method using an independent test dataset and variants in four additional proteins. For distinguishing severe and nonsevere variants, PON-PS showed an accuracy of 61% in the test dataset, which is higher than for existing tolerance prediction methods. PON-PS is the first generic tool developed for this task. The tool can be used together with other evidence for improving diagnosis and prognosis and for prioritization of preventive interventions, clinical monitoring, and molecular tests.

摘要

大多数疾病,包括那些具有遗传起源的疾病,都表现出严重程度的连续性。针对众多疾病的临床干预措施是基于表型的严重程度。预测由遗传变异导致的严重程度有助于疾病诊断和治疗选择。尽管计算预测已被用作对遗传变异的疾病相关性进行分类的证据,但仍缺乏用于大规模预测疾病严重程度的专门工具。在此,我们人工整理了一个数据集,其中包含导致严重和不太严重表型的变异,并研究了变异影响预测工具区分它们的能力。我们发现这些工具无法区分这两组变异。然后,我们开发了一种基于机器学习的新方法PON-PS(http://structure.bmc.lu.se/PON-PS),用于对与良性、严重和不太严重表型相关的氨基酸替换进行分类。我们使用一个独立的测试数据集以及另外四种蛋白质中的变异对该方法进行了测试。在测试数据集中,对于区分严重和非严重变异,PON-PS的准确率为61%,高于现有的耐受性预测方法。PON-PS是为此任务开发的首个通用工具。该工具可与其他证据一起用于改善诊断和预后,以及对预防性干预、临床监测和分子检测进行优先级排序。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验