Suppr超能文献

利用机器学习预测遗传变异严重程度以解释分子模拟。

Predicting Genetic Variation Severity Using Machine Learning to Interpret Molecular Simulations.

机构信息

Innovation Center for Biomedical Informatics, Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington DC; School of Systems Biology, George Mason University, Manassas, Virginia.

School of Systems Biology, George Mason University, Manassas, Virginia.

出版信息

Biophys J. 2021 Jan 19;120(2):189-204. doi: 10.1016/j.bpj.2020.12.002. Epub 2020 Dec 15.

Abstract

Distinct missense mutations in a specific gene have been associated with different diseases as well as differing severity of a disease. Current computational methods predict the potential pathogenicity of a missense variant but fail to differentiate between separate disease or severity phenotypes. We have developed a method to overcome this limitation by applying machine learning to features extracted from molecular dynamics simulations, creating a way to predict the effect of novel genetic variants in causing a disease, drug resistance, or another specific trait. As an example, we have applied this novel approach to variants in calmodulin associated with two distinct arrhythmias as well as two different neurodegenerative diseases caused by variants in amyloid-β peptide. The new method successfully predicts the specific disease caused by a gene variant and ranks its severity with more accuracy than existing methods. We call this method molecular dynamics phenotype prediction model.

摘要

特定基因中的不同错义突变与不同疾病以及疾病严重程度相关。目前的计算方法预测错义变异的潜在致病性,但无法区分不同的疾病或严重程度表型。我们开发了一种通过将机器学习应用于从分子动力学模拟中提取的特征来克服这一限制的方法,从而能够预测新型遗传变异导致疾病、耐药性或其他特定特征的方式。例如,我们已经将这种新方法应用于与两种不同心律失常以及由淀粉样蛋白-β肽变异引起的两种不同神经退行性疾病相关的钙调蛋白变异。新方法成功预测了由基因突变引起的特定疾病,并比现有方法更准确地对其严重程度进行排序。我们称这种方法为分子动力学表型预测模型。

相似文献

2
Predicting Severity of Disease-Causing Variants.预测致病变体的严重程度。
Hum Mutat. 2017 Apr;38(4):357-364. doi: 10.1002/humu.23173. Epub 2017 Jan 24.
6
Improved pathogenicity prediction for rare human missense variants.提高罕见人类错义变异体的致病性预测。
Am J Hum Genet. 2021 Oct 7;108(10):1891-1906. doi: 10.1016/j.ajhg.2021.08.012. Epub 2021 Sep 21.

引用本文的文献

本文引用的文献

3
Genetic Mosaicism in Calmodulinopathy.钙调蛋白病中的遗传嵌合体。
Circ Genom Precis Med. 2019 Sep;12(9):375-385. doi: 10.1161/CIRCGEN.119.002581. Epub 2019 Aug 27.
10
Molecular mechanism for inhibition of twinfilin by phosphoinositides.双丝氨酸蛋白抑制因子的磷酸肌醇抑制分子机制。
J Biol Chem. 2018 Mar 30;293(13):4818-4829. doi: 10.1074/jbc.RA117.000484. Epub 2018 Feb 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验