Structural Biology Laboratory, Elettra-Sincrotrone Trieste S.C.p.A., 34149 Trieste, Italy.
CIC bioGUNE, Parque Tecnologico de Bizkaia Edificio 800, 48160 Derio, Spain.
Nat Commun. 2017 Jan 10;8:13935. doi: 10.1038/ncomms13935.
Sliding clamps encircle DNA and tether polymerases and other factors to the genomic template. However, the molecular mechanism of clamp sliding on DNA is unknown. Using crystallography, NMR and molecular dynamics simulations, here we show that the human clamp PCNA recognizes DNA through a double patch of basic residues within the ring channel, arranged in a right-hand spiral that matches the pitch of B-DNA. We propose that PCNA slides by tracking the DNA backbone via a 'cogwheel' mechanism based on short-lived polar interactions, which keep the orientation of the clamp invariant relative to DNA. Mutation of residues at the PCNA-DNA interface has been shown to impair the initiation of DNA synthesis by polymerase δ (pol δ). Therefore, our findings suggest that a clamp correctly oriented on DNA is necessary for the assembly of a replication-competent PCNA-pol δ holoenzyme.
滑动夹环绕 DNA 并将聚合酶和其他因素固定在基因组模板上。然而,滑动夹在 DNA 上滑动的分子机制尚不清楚。使用晶体学、NMR 和分子动力学模拟,我们在这里表明,人类夹 PCNA 通过环道内的双碱性残基斑块识别 DNA,该斑块排列成右手螺旋,与 B-DNA 的螺距匹配。我们提出 PCNA 通过基于短暂的极性相互作用的“齿轮”机制通过跟踪 DNA 骨架来滑动,该机制保持夹相对于 DNA 的方向不变。已经表明,PCNA-DNA 界面上的残基突变会损害聚合酶 δ (pol δ) 启动 DNA 合成。因此,我们的发现表明,正确定向于 DNA 的夹子对于组装具有复制能力的 PCNA-pol δ 全酶是必要的。