Department of Ecology, Evolution, and Environmental Biology, Columbia University, 1200 Amsterdam Avenue, Schermerhorn Ex 1014A, New York, New York, 10027, USA.
Department of Ecology and Evolutionary Biology, Princeton University, 106A Guyot Hall, Princeton, New Jersey, 08544, USA.
Ecology. 2017 Apr;98(4):1049-1061. doi: 10.1002/ecy.1733.
Many tropical forests are characterized by large losses of plant-available forms of nitrogen (N), indicating that they are N rich, and by an abundance of plants capable of symbiotic N fixation. These N-fixing plants can fix enough N to drive N richness. However, biological N fixation (BNF) is more expensive than using plant-available N, so sustained BNF in N-rich soils appears to be a paradox. Here, we use spatially explicit ecosystem models to analyze the conditions under which spatial heterogeneity can induce simultaneous BNF and loss of plant-available N (hereafter, we call this combination "N-rich BNF"). Spatial movement of litter to neighboring plants' rooting zones can maintain N-rich BNF under a variety of conditions. For example, when N-fixers have higher N demand than non-fixers, N-fixers export N-rich litter to non-fixers, inducing large losses of plant-available N from the ecosystem, and receive N-poor litter from non-fixers, inducing BNF. BNF and N loss fluxes increase in proportion to the ratio of N-fixer litter N:P to non-fixer litter N:P, and also in proportion to the fraction of litter transferred out of a tree's rooting zone. Stoichiometric variability augments N-rich BNF, as does increasing the fraction of the landscape occupied by N-fixers, at least when they are rare. On the contrary, greater root overlap between neighbors and clumping of N-fixers diminish N-rich BNF. Finally, we examined how spatial litter transfer interacts with another mechanism that can sustain N-rich BNF, incomplete down-regulation of BNF. Spatial transfer and incomplete down-regulation can both sustain N-rich BNF, but they are compensatory rather than additive. These mechanisms can be distinguished by examining where N losses occur. Incomplete down-regulation of BNF leads to greater N loss under N-fixing trees, whereas spatial litter transfer leads to greater N loss under non-fixing trees. Along with time lags in regulating BNF, these results comprise a series of hypotheses that could help understand the N paradox of tropical forests.
许多热带森林的特点是大量植物可利用形式的氮(N)损失,表明它们富含 N,并且有大量能够共生固氮的植物。这些固氮植物可以固定足够的 N 来驱动 N 富化。然而,生物固氮(BNF)比使用植物可利用的 N 更昂贵,因此在富含 N 的土壤中持续的 BNF 似乎是一个悖论。在这里,我们使用空间显式生态系统模型来分析空间异质性可以诱导同时进行 BNF 和植物可利用 N 损失(以下简称“富 N BNF”)的条件。凋落物向邻近植物根系区的空间运动可以在各种条件下维持富 N BNF。例如,当固氮生物比非固氮生物对 N 的需求更高时,固氮生物将富含 N 的凋落物输出到非固氮生物,从而导致生态系统中大量植物可利用的 N 损失,并从非固氮生物接收贫 N 的凋落物,从而诱导 BNF。BNF 和 N 损失通量与固氮生物凋落物 N:P 与非固氮生物凋落物 N:P 的比值成正比,也与凋落物从一棵树的根系区转移出的部分成正比。化学计量变异性增强了富 N BNF,随着占据景观的固氮生物比例增加,至少在它们稀少时,富 N BNF 也会增加。相反,邻居之间的根重叠增加和固氮生物的聚集减少了富 N BNF。最后,我们研究了空间凋落物转移如何与另一种可以维持富 N BNF 的机制相互作用,即不完全下调 BNF。空间转移和不完全下调都可以维持富 N BNF,但它们是互补的而不是相加的。可以通过检查 N 损失发生的位置来区分这些机制。不完全下调 BNF 会导致在固氮树下更大的 N 损失,而空间凋落物转移会导致在非固氮树下更大的 N 损失。与调节 BNF 的时间滞后一起,这些结果构成了一系列假设,可以帮助理解热带森林的 N 悖论。