Yale-NUS College, 16 College Avenue West, 138527 Singapore, Singapore.
Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117542 Singapore, Singapore.
Ecology. 2017 Apr;98(4):1062-1070. doi: 10.1002/ecy.1734. Epub 2017 Mar 20.
Secondary forests are important carbon sinks, but their biomass dynamics vary markedly within and across landscapes. The biotic and abiotic drivers of this variation are still not well understood. We tested the effects of soil resource availability and competition by lianas on the biomass dynamics of young secondary tropical forests in Panama and assessed the extent to which liana effects were mediated by soil resource availability. Over a five-year period, growth, mortality, and recruitment of woody plants of ≥1 cm diameter were monitored in 84 plots in 3-30-year-old secondary forests across the Agua Salud site in central Panama. Biomass dynamics and the effects of lianas and soil resources were examined using (generalized) linear mixed-effect models and a model averaging approach. There was strong spatial and temporal variation in liana biomass within and across the plots. The relative biomass of lianas had a strong negative effect on overall tree growth, growth of understory trees decreased with soil fertility and dry season soil water content, and the effect of lianas on tree mortality varied with soil fertility. Tree recruitment was not associated with any of the predictor variables. Our model indicates that tree biomass growth across our landscape was reduced with 22% due to competition with lianas, and that the effect of lianas increased during succession, from 19% after five years to 32% after 30 years. The projected liana-induced growth reduction after 60 years was 47%, which was consistent with data from a nearby site. Our study shows that the observed liana proliferation across tropical forests may reduce the sequestration and storage of carbon in young secondary forests, with important implications for the carbon balance of tropical forest landscapes and consequently for global climate change. Our study highlights the need to incorporate lianas and soil variables in research on the biomass dynamics of secondary forest across tropical landscapes, and the need for well-replicated longitudinal studies to cover landscape-level variability in the relevant abiotic and biotic components.
次生林是重要的碳汇,但它们的生物量动态在景观内和之间差异很大。这种变化的生物和非生物驱动因素仍未得到很好的理解。我们在巴拿马 Agua Salud 地区的 3 到 30 年生次生林中的 84 个样地中,监测了 ≥1 厘米直径的木本植物的生长、死亡和繁殖情况,以测试藤本植物对土壤资源可利用性和竞争的影响,并评估藤本植物的影响在多大程度上受到土壤资源可利用性的调节。在五年的时间里,使用(广义)线性混合效应模型和模型平均方法,监测了 84 个样地中 3 到 30 年生次生林中 ≥1 厘米直径的木本植物的生长、死亡和繁殖情况。通过(广义)线性混合效应模型和模型平均方法,监测了 84 个样地中 3 到 30 年生次生林中 ≥1 厘米直径的木本植物的生长、死亡和繁殖情况。利用(广义)线性混合效应模型和模型平均方法,监测了 84 个样地中 3 到 30 年生次生林中 ≥1 厘米直径的木本植物的生长、死亡和繁殖情况。利用(广义)线性混合效应模型和模型平均方法,监测了 84 个样地中 3 到 30 年生次生林中 ≥1 厘米直径的木本植物的生长、死亡和繁殖情况。生物量动态以及藤本植物和土壤资源的影响。样地内和样地间的藤本生物量具有很强的空间和时间变异性。藤本植物的相对生物量对树木的总体生长有很强的负向影响,林下树木的生长随土壤肥力和旱季土壤含水量而降低,藤本植物对树木死亡率的影响随土壤肥力而变化。树木的繁殖与任何预测变量都没有关系。我们的模型表明,由于与藤本植物的竞争,我们景观中的树木生物量生长减少了 22%,并且随着演替的进行,藤本植物的影响增加,五年后为 19%,30 年后为 32%。预计 60 年后藤本植物引起的生长减少将达到 47%,这与附近一个地点的数据一致。我们的研究表明,热带森林中观察到的藤本植物的大量繁殖可能会降低年轻次生林对碳的固存和储存,这对热带森林景观的碳平衡以及全球气候变化都有重要影响。我们的研究强调了在热带景观中研究次生林生物量动态时需要将藤本植物和土壤变量纳入研究,并需要进行复制良好的纵向研究,以涵盖相关生物和非生物成分的景观水平变异性。