Huang Tai-Yu, Zheng Donghai, Houmard Joseph A, Brault Jeffrey J, Hickner Robert C, Cortright Ronald N
Department of Kinesiology, East Carolina University, Greenville, North Carolina.
East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina.
Am J Physiol Endocrinol Metab. 2017 Apr 1;312(4):E253-E263. doi: 10.1152/ajpendo.00331.2016. Epub 2017 Jan 10.
Peroxisomes are indispensable organelles for lipid metabolism in humans, and their biogenesis has been assumed to be under regulation by peroxisome proliferator-activated receptors (PPARs). However, recent studies in hepatocytes suggest that the mitochondrial proliferator PGC-1α (peroxisome proliferator-activated receptor gamma coactivator-1α) also acts as an upstream transcriptional regulator for enhancing peroxisomal abundance and associated activity. It is unknown whether the regulatory mechanism(s) for enhancing peroxisomal function is through the same node as mitochondrial biogenesis in human skeletal muscle (HSkM) and whether fatty acid oxidation (FAO) is affected. Primary myotubes from vastus lateralis biopsies from lean donors (BMI = 24.0 ± 0.6 kg/m; = 6) were exposed to adenovirus encoding human PGC-1α or GFP control. Peroxisomal biogenesis proteins (peroxins) and genes () responsible for proliferation and functions were assessed by Western blotting and real-time qRT-PCR, respectively. [1-C]palmitic acid and [1-C]lignoceric acid (exclusive peroxisomal-specific substrate) were used to assess mitochondrial oxidation of peroxisomal-derived metabolites. After overexpression of PGC-1α, ) peroxisomal membrane protein 70 kDa (PMP70), PEX19, and mitochondrial citrate synthetase protein content were significantly elevated ( < 0.05), ) , , key , and peroxisomal β-oxidation mRNA expression levels were significantly upregulated ( < 0.05), and ) a concomitant increase in lignoceric acid oxidation by both peroxisomal and mitochondrial activity was observed ( < 0.05). These novel findings demonstrate that, in addition to the proliferative effect on mitochondria, PGC-1α can induce peroxisomal activity and accompanying elevations in long-chain and very-long-chain fatty acid oxidation by a peroxisomal-mitochondrial functional cooperation, as observed in HSkM cells.
过氧化物酶体是人体脂质代谢不可或缺的细胞器,其生物发生过程一直被认为受过氧化物酶体增殖物激活受体(PPARs)调控。然而,最近在肝细胞中的研究表明,线粒体增殖物PGC-1α(过氧化物酶体增殖物激活受体γ共激活因子-1α)也作为上游转录调节因子,增强过氧化物酶体丰度及相关活性。目前尚不清楚增强过氧化物酶体功能的调节机制是否与人类骨骼肌(HSkM)中线粒体生物发生的调节机制相同,以及脂肪酸氧化(FAO)是否会受到影响。从瘦素供体(BMI = 24.0 ± 0.6 kg/m²;n = 6)的股外侧肌活检中获取的原代肌管,分别用编码人PGC-1α的腺病毒或绿色荧光蛋白(GFP)对照进行处理。分别通过蛋白质免疫印迹法和实时定量逆转录聚合酶链反应(qRT-PCR)评估负责过氧化物酶体增殖和功能的过氧化物酶体生物发生蛋白(过氧化物酶)和基因。使用[1-¹⁴C]棕榈酸和[1-¹⁴C]木蜡酸(仅过氧化物酶体特异性底物)评估过氧化物酶体衍生代谢物的线粒体氧化。过表达PGC-1α后,(1)过氧化物酶体膜蛋白70 kDa(PMP70)、PEX19和线粒体柠檬酸合酶蛋白含量显著升高(P < 0.05),(2)ACOX1、ACOX2、EHHADH、关键的过氧化物酶体β氧化mRNA表达水平显著上调(P < 0.05),并且(3)观察到过氧化物酶体和线粒体活性导致木蜡酸氧化同时增加(P < 0.05)。这些新发现表明,如在HSkM细胞中观察到的那样,除了对线粒体的增殖作用外,PGC-1α还可通过过氧化物酶体 - 线粒体功能协作诱导过氧化物酶体活性以及伴随的长链和极长链脂肪酸氧化升高。