Suppr超能文献

中国和印度50岁及以上成年人的糖尿病药物使用情况与灾难性医疗支出:世界卫生组织全球老龄化与成人健康研究(SAGE)的结果

Diabetes mellitus medication use and catastrophic healthcare expenditure among adults aged 50+ years in China and India: results from the WHO study on global AGEing and adult health (SAGE).

作者信息

Gwatidzo Shingai Douglas, Stewart Williams Jennifer

机构信息

Umeå International School of Public Health, Unit of Epidemiology and Global Health, Department of Public Health and Clinical Medicine, Faculty of Medicine, Umeå University, SE-90185, Umeå, Sweden.

Unit of Epidemiology and Global Health, Department of Public Health and Clinical Medicine, Faculty of Medicine, Umeå University, SE-90185, Umeå, Sweden.

出版信息

BMC Geriatr. 2017 Jan 11;17(1):14. doi: 10.1186/s12877-016-0408-x.

Abstract

BACKGROUND

Expenditure on medications for highly prevalent chronic conditions such as diabetes mellitus (DM) can result in financial impoverishment. People in developing countries and in low socioeconomic status groups are particularly vulnerable. China and India currently hold the world's two largest DM populations. Both countries are ageing and undergoing rapid economic development, urbanisation and social change. This paper assesses the determinants of DM medication use and catastrophic expenditure on medications in older adults with DM in China and India.

METHODS

Using national standardised data collected from adults aged 50 years and above with DM (self-reported) in China (N = 773) and India (N = 463), multivariable logistic regression describes: 1) association between respondents' socio-demographic and health behavioural characteristics and the dependent variable, DM medication use, and 2) association between DM medication use (independent variable) and household catastrophic expenditure on medications (dependent variable) (China: N = 630; India: N = 439). The data source is the World Health Organization (WHO) Study on global AGEing and adult health (SAGE) Wave 1 (2007-2010).

RESULTS

Prevalence of DM medication use was 87% in China and 71% in India. Multivariable analysis indicates that people reporting lifestyle modification were more likely to use DM medications in China (OR = 6.22) and India (OR = 8.45). Women were more likely to use DM medications in China (OR = 1.56). Respondents in poorer wealth quintiles in China were more likely to use DM medications whereas the reverse was true in India. Almost 17% of people with DM in China experienced catastrophic healthcare expenditure on medications compared with 7% in India. Diabetes medication use was not a statistically significant predictor of catastrophic healthcare expenditure on medications in either country, although the odds were 33% higher among DM medications users in China (OR = 1.33).

CONCLUSIONS

The country comparison reflects major public policy differences underpinned by divergent political and ideological frameworks. The DM epidemic poses huge public health challenges for China and India. Ensuring equitable and affordable access to medications for DM is fundamental for healthy ageing cohorts, and is consistent with the global agenda for universal healthcare coverage.

摘要

背景

糖尿病(DM)等高度流行的慢性病的药物支出可能导致经济贫困。发展中国家以及社会经济地位较低群体中的人群尤其脆弱。中国和印度目前拥有世界上最大的两大糖尿病患者群体。两国都在老龄化,并且正在经历快速的经济发展、城市化和社会变革。本文评估了中国和印度老年糖尿病患者使用糖尿病药物的决定因素以及药物灾难性支出情况。

方法

使用从中国(N = 773)和印度(N = 463)50岁及以上自我报告患有糖尿病的成年人中收集的国家标准数据,多变量逻辑回归描述了:1)受访者的社会人口统计学和健康行为特征与因变量糖尿病药物使用之间的关联,以及2)糖尿病药物使用(自变量)与家庭药物灾难性支出(因变量)之间的关联(中国:N = 630;印度:N = 439)。数据来源是世界卫生组织(WHO)全球老龄化与成人健康研究(SAGE)第一轮(2007 - 2010年)。

结果

中国糖尿病药物使用率为87%,印度为71%。多变量分析表明,在中国(OR = 6.22)和印度(OR = 8.45),报告有生活方式改变的人更有可能使用糖尿病药物。在中国,女性更有可能使用糖尿病药物(OR = 1.56)。中国财富五分位数较低的受访者更有可能使用糖尿病药物,而在印度情况则相反。中国近17%的糖尿病患者经历了药物灾难性医疗支出,而印度为7%。尽管中国糖尿病药物使用者中发生灾难性医疗支出的几率高出33%(OR = 1.33),但在这两个国家,糖尿病药物使用都不是药物灾难性医疗支出的统计学显著预测因素。

结论

国家间的比较反映了由不同政治和意识形态框架支撑的重大公共政策差异。糖尿病流行给中国和印度带来了巨大的公共卫生挑战。确保公平且可负担地获得糖尿病药物对于健康老龄化人群至关重要,并且与全球全民医保覆盖议程相一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27f9/5225610/15848e0e6ebf/12877_2016_408_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验