Rossin Aurelie, Hueber Anne-Odile
Institut de Biologie Valrose, CNRS UMR 7277, INSERM UMR 1091, Université Côte d'Azur, Parc Valrose, Bâtiment des Sciences Naturelles, 06108, Nice, France.
Institut de Biologie Valrose, CNRS UMR 7277, INSERM UMR 1091,Université de Nice, Nice, France.
Methods Mol Biol. 2017;1557:189-198. doi: 10.1007/978-1-4939-6780-3_17.
S-acylation is the covalent addition of a fatty acid, most generally palmitate onto cysteine residues of proteins through a labile thioester linkage. The death receptor CD95 is S-palmitoylated and this post-translational modification plays a crucial role on CD95 organization in cellular membranes and thus on CD95-mediated signaling. Here, we describe the nonradioactive detection of CD95 S-acylation by acyl-biotin exchange chemistry in which a biotin is substituted for the CD95-linked fatty acid. This sensitive technique, which depends on the ability of hydroxylamine to specifically cleave the thioester linkage between fatty acids and proteins, relies on three chemical steps: (1) blockage of free thiols of non-modified cysteine residues, (2) hydroxylamine-mediated cleavage of thioester-linked fatty acids to restore free thiols and (3) biotinylation of free thiols with a thiol reactive biotinylation agent. Resulting biotinylated proteins can be easily purified by an avidin capture and analyzed by SDS-PAGE and immunoblotting.
S-酰化是指通过不稳定的硫酯键将脂肪酸(最常见的是棕榈酸)共价连接到蛋白质的半胱氨酸残基上。死亡受体CD95会发生S-棕榈酰化,这种翻译后修饰对CD95在细胞膜中的组织方式起着关键作用,进而对CD95介导的信号传导也至关重要。在此,我们描述了通过酰基-生物素交换化学方法对CD95的S-酰化进行非放射性检测,其中生物素取代了与CD95相连的脂肪酸。这种灵敏的技术依赖于羟胺特异性裂解脂肪酸与蛋白质之间硫酯键的能力,它基于三个化学步骤:(1)封闭未修饰半胱氨酸残基中的游离巯基;(2)羟胺介导硫酯连接的脂肪酸裂解以恢复游离巯基;(3)用巯基反应性生物素化试剂对游离巯基进行生物素化。产生的生物素化蛋白质可通过抗生物素蛋白捕获轻松纯化,并通过SDS-聚丙烯酰胺凝胶电泳和免疫印迹进行分析。