Suppr超能文献

一种经过实验验证的治疗床和多叶准直器跟踪模拟器,用于研究混合治疗床-多叶准直器跟踪。

An experimentally validated couch and MLC tracking simulator used to investigate hybrid couch-MLC tracking.

作者信息

Toftegaard Jakob, Hansen Rune, Ravkilde Thomas, Macek Kristijan, Poulsen Per Rugaard

机构信息

Department of Oncology, Aarhus University Hospital, Aarhus C, 8000, Denmark.

Department of Medical Physics, Aarhus University Hospital, Aarhus C, 8000, Denmark.

出版信息

Med Phys. 2017 Mar;44(3):798-809. doi: 10.1002/mp.12104.

Abstract

PURPOSE/OBJECTIVE: Couch and MLC tracking are two novel techniques to mitigate intrafractional tumor motion on a conventional linear accelerator, but both techniques still have residual dosimetric errors. Here, we first propose and experimentally validate a software tool to simulate couch and MLC tracking, and then use the simulator to study hybrid couch-MLC tracking for improved tracking performance.

MATERIALS AND METHODS

The tracking simulator requires a treatment plan and a motion trajectory as input and simulates the delivered monitor units and motion of all accelerator parts as function of time. The simulator outputs accelerator log files synchronized with the target motion as well as the MLC exposure error, which is a simple dose error surrogate. A series of couch and MLC tracking experiments were used to determine appropriate parameters for the simulator dynamics and to validate the simulator by its ability to reproduce the experimental tracking accuracy. Three hybrid couch-MLC tracking strategies were investigated. All strategies divided the target motion in beam's eye view into motion perpendicular and parallel to the MLC leaves. In the hybrid strategies, couch tracking compensated for the following target motion components (in order of decreasing couch tracking contribution): (a) all perpendicular motion, (b) residual perpendicular motion less than half a leaf width, and (c) persistent residual perpendicular motion that was stable at a time scale of 1s. MLC tracking compensated for the remaining target motion. All tracking strategies were simulated with two prostate and two lung cancer single-arc VMAT plans using 695 prostate trajectories and 160 lung tumor trajectories. The tracking error was quantified as the MLC exposure error. The couch motion was quantified as the mean speed, acceleration, and jerk of the couch.

RESULTS

The simulator reproduced the experimental gantry position with a mean (maximum) root-mean-square (rms) error of 0.07°(0.2°). The geometrical rms tracking error was reproduced with mean (maximum) absolute errors of 0.20 mm(0.23 mm) and 0.1 mm(0.23 mm) for MLC tracking parallel and perpendicular to the MLC leaves, and 0.40 mm(0.46 mm), 0.09 mm(0.25 mm), and 0.20 mm(0.46 mm) for couch tracking in the left-right, anterior-posterior, and cranio-caudal directions. The MLC exposure error of VMAT MLC tracking was reproduced with a mean absolute error of 5.6%. All hybrid tracking strategies reduced the couch motion relative to pure couch tracking and improved the tracking accuracy compared with pure MLC tracking. The mean MLC exposure error reduction relative to no tracking was 66.6% (couch tracking), 72.9% (hybrid (1)), 70.2% (2), 59.1% (3), and 55.6% (MLC tracking) for lung tumor motion and 76.5% (couch tracking), 76.1% (1), 74.3% (2), 72.3% (3), and 35.9% (MLC tracking) for prostate motion. For prostate motion, pure MLC tracking resulted in rather large MLC exposure errors that were more than halved with all hybrid tracking strategies.

CONCLUSION

A couch and MLC tracking simulator was developed and experimentally validated against a series of tracking experiments. All hybrid couch-MLC tracking strategies improved MLC tracking. Two strategies also improved couch tracking of lung tumors. In particular, MLC tracking of prostate may be greatly improved by a modest degree of couch motion.

摘要

目的/目标:治疗床和多叶准直器(MLC)跟踪是在传统直线加速器上减轻分次内肿瘤运动的两种新技术,但这两种技术仍存在残余剂量误差。在此,我们首先提出并通过实验验证一种用于模拟治疗床和MLC跟踪的软件工具,然后使用该模拟器研究混合治疗床 - MLC跟踪以提高跟踪性能。

材料与方法

跟踪模拟器需要输入治疗计划和运动轨迹,并模拟作为时间函数的输出监测单位以及所有加速器部件的运动。模拟器输出与目标运动同步的加速器日志文件以及MLC照射误差,这是一种简单的剂量误差替代指标。通过一系列治疗床和MLC跟踪实验来确定模拟器动力学的合适参数,并通过其再现实验跟踪精度的能力来验证模拟器。研究了三种混合治疗床 - MLC跟踪策略。所有策略将射野视角下的目标运动分为垂直于和平行于MLC叶片的运动。在混合策略中,治疗床跟踪补偿以下目标运动分量(按治疗床跟踪贡献递减顺序):(a)所有垂直运动,(b)小于半叶宽度的残余垂直运动,以及(c)在1秒时间尺度上稳定的持续残余垂直运动。MLC跟踪补偿剩余的目标运动。使用695条前列腺轨迹和160条肺肿瘤轨迹,对两个前列腺癌和两个肺癌单弧容积调强放疗(VMAT)计划的所有跟踪策略进行了模拟。跟踪误差量化为MLC照射误差。治疗床运动量化为治疗床的平均速度、加速度和加加速度。

结果

模拟器再现实验机架位置的平均(最大)均方根(rms)误差为0.07°(0.2°)。对于平行和垂直于MLC叶片的MLC跟踪,几何rms跟踪误差的再现平均(最大)绝对误差分别为0.20毫米(0.23毫米)和0.1毫米(0.23毫米),对于治疗床在左右、前后和头脚方向的跟踪,分别为0.40毫米(0.46毫米)、0.09毫米(0.25毫米)和0.20毫米(0.46毫米)。VMAT MLC跟踪的MLC照射误差再现平均绝对误差为5.6%。所有混合跟踪策略相对于纯治疗床跟踪减少了治疗床运动,并且与纯MLC跟踪相比提高了跟踪精度。对于肺肿瘤运动,相对于无跟踪,MLC照射误差的平均降低分别为66.6%(治疗床跟踪)、72.9%(混合(1))、70.2%(2)、59.1%(3)和55.6%(MLC跟踪);对于前列腺运动,分别为76.5%(治疗床跟踪)、76.1%(1)、74.3%(2)、72.3%(3)和35.9%(MLC跟踪)。对于前列腺运动,纯MLC跟踪导致相当大的MLC照射误差,所有混合跟踪策略都使其减少了一半以上。

结论

开发了一种治疗床和MLC跟踪模拟器,并通过一系列跟踪实验进行了实验验证。所有混合治疗床 - MLC跟踪策略都改善了MLC跟踪。两种策略还改善了肺肿瘤的治疗床跟踪。特别是,适度的治疗床运动可大大改善前列腺的MLC跟踪。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验