Miller Mark S, Callahan Damien M, Tourville Timothy W, Slauterbeck James R, Kaplan Anna, Fiske Brad R, Savage Patrick D, Ades Philip A, Beynnon Bruce D, Toth Michael J
Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont.
Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts.
J Appl Physiol (1985). 2017 Apr 1;122(4):775-787. doi: 10.1152/japplphysiol.00830.2016. Epub 2017 Jan 12.
High-intensity resistance exercise (REX) training increases physical capacity, in part, by improving muscle cell size and function. Moderate-intensity REX, which is more feasible for many older adults with disease and/or disability, also increases physical function, but the mechanisms underlying such improvements are not understood. Therefore, we measured skeletal muscle structure and function from the molecular to the tissue level in response to 14 wk of moderate-intensity REX in physically inactive older adults with knee osteoarthritis ( = 17; 70 ± 1 yr). Although REX training increased quadriceps muscle cross-sectional area (CSA), average single-fiber CSA was unchanged because of reciprocal changes in myosin heavy chain (MHC) I and IIA fibers. Intermyofibrillar mitochondrial content increased with training because of increases in mitochondrial size in men, but not women, with no changes in subsarcolemmal mitochondria in either sex. REX increased whole muscle contractile performance similarly in men and women. In contrast, adaptations in single-muscle fiber force production per CSA (i.e., tension) and contractile velocity varied between men and women in a fiber type-dependent manner, with adaptations being explained at the molecular level by differential changes in myosin-actin cross-bridge kinetics and mechanics and single-fiber MHC protein expression. Our results are notable compared with studies of high-intensity REX because they show that the effects of moderate-intensity REX in older adults on muscle fiber size/structure and myofilament function are absent or modest. Moreover, our data highlight unique sex-specific adaptations due to differential cellular and subcellular structural and functional changes. Moderate-intensity resistance training causes sex-specific adaptations in skeletal muscle structure and function at the cellular and molecular levels in inactive older adult men and women with knee osteoarthritis. However, these responses were minimal compared with high-intensity resistance training. Thus adjuncts to moderate-intensity training need to be developed to correct underlying cellular and molecular structural and functional deficits that are at the root of impaired physical function in this mobility-limited population.
高强度抗阻运动(REX)训练可部分通过改善肌肉细胞大小和功能来提高身体能力。中等强度的REX对许多患有疾病和/或残疾的老年人来说更可行,它也能提高身体功能,但其改善的潜在机制尚不清楚。因此,我们在17名身体活动较少、患有膝关节骨关节炎的老年人(年龄70±1岁)中,测量了在进行14周中等强度REX后,从分子水平到组织水平的骨骼肌结构和功能。尽管REX训练增加了股四头肌的横截面积(CSA),但由于肌球蛋白重链(MHC)I型和IIA型纤维的相互变化,平均单纤维CSA没有改变。肌原纤维间线粒体含量因训练而增加,这是由于男性线粒体大小增加,但女性没有,且两性的肌膜下线粒体均无变化。REX对男性和女性全肌肉收缩性能的提高相似。相比之下,每CSA单肌纤维力产生(即张力)和收缩速度的适应性在男性和女性之间因纤维类型而异,在分子水平上,这种适应性可通过肌球蛋白-肌动蛋白横桥动力学和力学以及单纤维MHC蛋白表达的差异变化来解释。与高强度REX的研究相比,我们的结果值得注意,因为它们表明中等强度REX对老年人肌肉纤维大小/结构和肌丝功能的影响不存在或很轻微。此外,我们的数据突出了由于细胞和亚细胞结构及功能变化的差异而产生的独特性别特异性适应性。中等强度抗阻训练在患有膝关节骨关节炎的身体活动较少的老年男性和女性中,会在细胞和分子水平上引起骨骼肌结构和功能的性别特异性适应性变化。然而,与高强度抗阻训练相比,这些反应很小。因此,需要开发中等强度训练的辅助手段,以纠正潜在的细胞和分子结构及功能缺陷,这些缺陷是导致这一行动受限人群身体功能受损的根源。