Suppr超能文献

跨边界的机械感知:大孔支架内的成纤维细胞感知并响应支架壁之外的机械环境。

Mechanosensation across borders: fibroblasts inside a macroporous scaffold sense and respond to the mechanical environment beyond the scaffold walls.

机构信息

Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, Germany.

Berlin-Brandenburg School for Regenerative Therapies, Berlin, Germany.

出版信息

J Tissue Eng Regen Med. 2018 Jan;12(1):265-275. doi: 10.1002/term.2410. Epub 2017 Jun 4.

Abstract

In tissue defects, cells face distinct mechanical boundary conditions, but how this influences early stages of tissue regeneration remains largely unknown. Biomaterials are used to fill defects but also to provide specific mechanical or geometrical signals. However, they might at the same time shield mechanical information from surrounding tissues that is relevant for tissue functionalisation. This study investigated how fibroblasts in a soft macroporous biomaterial scaffold respond to distinct mechanical environments while they form microtissues. Different boundary stiffnesses counteracting scaffold contraction were provided via a newly developed in vitro setup. Online monitoring over 14 days revealed 3.0 times lower microtissue contraction but 1.6 times higher contraction force for high vs. low stiffness. This difference was significant already after 48 h, a very early stage of microtissue growth. The microtissue's mechanical and geometrical adaptation indicated a collective cellular behaviour and mechanical communication across scaffold pore walls. Surprisingly, the stiffness of the environment influenced cell behaviour even inside macroporous scaffolds where direct cell-cell contacts are hindered. Mechanical communication between cells via traction forces is essential for tissue adaptation to the environment and should not be blocked by rigid biomaterials. Copyright © 2017 John Wiley & Sons, Ltd.

摘要

在组织缺损中,细胞面临着截然不同的力学边界条件,但这如何影响组织再生的早期阶段在很大程度上仍是未知的。生物材料被用于填补缺损,同时提供特定的力学或几何信号。然而,它们也可能会屏蔽来自周围组织的对组织功能化有意义的力学信息。本研究旨在探究在形成微组织的过程中,软大孔生物材料支架中的成纤维细胞如何对不同的力学环境做出反应。通过新开发的体外装置,为对抗支架收缩提供了不同的边界刚度。14 天的在线监测显示,高刚度下微组织的收缩率降低了 3.0 倍,但收缩力增加了 1.6 倍。这种差异在微组织生长的早期阶段(48 小时)就非常显著。微组织的力学和几何适应性表明,细胞在整个支架孔壁之间存在着一种集体的细胞行为和力学通讯。令人惊讶的是,即使在大孔支架中,细胞间的力学通讯也会受到环境刚度的影响,而大孔支架中直接的细胞-细胞接触受到阻碍。细胞通过牵引力进行的力学通讯对于组织适应环境至关重要,不应被刚性生物材料所阻断。版权所有©2017 John Wiley & Sons, Ltd.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验