Gibbon John D, Pal Nairita, Gupta Anupam, Pandit Rahul
Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom.
Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, 560 012, India.
Phys Rev E. 2016 Dec;94(6-1):063103. doi: 10.1103/PhysRevE.94.063103. Epub 2016 Dec 12.
We consider the three-dimensional (3D) Cahn-Hilliard equations coupled to, and driven by, the forced, incompressible 3D Navier-Stokes equations. The combination, known as the Cahn-Hilliard-Navier-Stokes (CHNS) equations, is used in statistical mechanics to model the motion of a binary fluid. The potential development of singularities (blow-up) in the contours of the order parameter ϕ is an open problem. To address this we have proved a theorem that closely mimics the Beale-Kato-Majda theorem for the 3D incompressible Euler equations [J. T. Beale, T. Kato, and A. J. Majda, Commun. Math. Phys. 94, 61 (1984)CMPHAY0010-361610.1007/BF01212349]. By taking an L^{∞} norm of the energy of the full binary system, designated as E_{∞}, we have shown that ∫{0}^{t}E{∞}(τ)dτ governs the regularity of solutions of the full 3D system. Our direct numerical simulations (DNSs) of the 3D CHNS equations for (a) a gravity-driven Rayleigh Taylor instability and (b) a constant-energy-injection forcing, with 128^{3} to 512^{3} collocation points and over the duration of our DNSs confirm that E_{∞} remains bounded as far as our computations allow.
我们考虑与强迫性、不可压缩三维纳维-斯托克斯方程耦合并由其驱动的三维(3D)相场Cahn-Hilliard方程。这种组合,即所谓的Cahn-Hilliard-纳维-斯托克斯(CHNS)方程,在统计力学中用于模拟二元流体的运动。序参量ϕ的等值线中奇点(爆破)的潜在发展是一个未解决的问题。为了解决这个问题,我们证明了一个定理,该定理紧密模仿了关于三维不可压缩欧拉方程的Beale-Kato-Majda定理[J. T. Beale, T. Kato, and A. J. Majda, Commun. Math. Phys. 94, 61 (1984)CMPHAY0010-361610.1007/BF01212349]。通过取全二元系统能量的L∞范数,记为E∞,我们表明∫0tE∞(τ)dτ决定了全三维系统解的正则性。我们对三维CHNS方程进行的直接数值模拟(DNS),针对(a)重力驱动的瑞利-泰勒不稳定性和(b)恒定能量注入强迫,使用1283至5123个配置点,并且在我们的DNS持续时间内证实,在我们的计算范围内E∞保持有界。