Suppr超能文献

肠道神经系统发育:神经嵴细胞从神经管到结肠的旅程。

Enteric nervous system development: A crest cell's journey from neural tube to colon.

作者信息

Nagy Nandor, Goldstein Allan M

机构信息

Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Center for Neurointestinal Health, Massachusetts General Hospital, Boston, MA, United States; Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary.

Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Center for Neurointestinal Health, Massachusetts General Hospital, Boston, MA, United States.

出版信息

Semin Cell Dev Biol. 2017 Jun;66:94-106. doi: 10.1016/j.semcdb.2017.01.006. Epub 2017 Jan 10.

Abstract

The enteric nervous system (ENS) is comprised of a network of neurons and glial cells that are responsible for coordinating many aspects of gastrointestinal (GI) function. These cells arise from the neural crest, migrate to the gut, and then continue their journey to colonize the entire length of the GI tract. Our understanding of the molecular and cellular events that regulate these processes has advanced significantly over the past several decades, in large part facilitated by the use of rodents, avians, and zebrafish as model systems to dissect the signals and pathways involved. These studies have highlighted the highly dynamic nature of ENS development and the importance of carefully balancing migration, proliferation, and differentiation of enteric neural crest-derived cells (ENCCs). Proliferation, in particular, is critically important as it drives cell density and speed of migration, both of which are important for ensuring complete colonization of the gut. However, proliferation must be tempered by differentiation among cells that have reached their final destination and are ready to send axonal extensions, connect to effector cells, and begin to produce neurotransmitters or other signals. Abnormalities in the normal processes guiding ENCC development can lead to failure of ENS formation, as occurs in Hirschsprung disease, in which the distal intestine remains aganglionic. This review summarizes our current understanding of the factors involved in early development of the ENS and discusses areas in need of further investigation.

摘要

肠神经系统(ENS)由神经元和神经胶质细胞网络组成,负责协调胃肠道(GI)功能的许多方面。这些细胞起源于神经嵴,迁移至肠道,然后继续其行程以定植于胃肠道的全长。在过去几十年中,我们对调节这些过程的分子和细胞事件的理解有了显著进展,这在很大程度上得益于使用啮齿动物、鸟类和斑马鱼作为模型系统来剖析所涉及的信号和途径。这些研究突出了ENS发育的高度动态性质以及仔细平衡肠神经嵴衍生细胞(ENCCs)的迁移、增殖和分化的重要性。特别是增殖至关重要,因为它驱动细胞密度和迁移速度,这两者对于确保肠道完全定植都很重要。然而,对于已到达最终目的地并准备好发出轴突延伸、连接到效应细胞并开始产生神经递质或其他信号的细胞,增殖必须受到分化的调节。指导ENCC发育的正常过程中的异常可导致ENS形成失败,如先天性巨结肠病中发生的那样,其中远端肠道仍然无神经节。本综述总结了我们目前对ENS早期发育所涉及因素的理解,并讨论了需要进一步研究的领域。

相似文献

1
Enteric nervous system development: A crest cell's journey from neural tube to colon.
Semin Cell Dev Biol. 2017 Jun;66:94-106. doi: 10.1016/j.semcdb.2017.01.006. Epub 2017 Jan 10.
2
Enteric nervous system development: migration, differentiation, and disease.
Am J Physiol Gastrointest Liver Physiol. 2013 Jul 1;305(1):G1-24. doi: 10.1152/ajpgi.00452.2012. Epub 2013 May 2.
3
Advances in ontogeny of the enteric nervous system.
Neurogastroenterol Motil. 2006 Oct;18(10):876-87. doi: 10.1111/j.1365-2982.2006.00806.x.
4
Enteric nervous system assembly: Functional integration within the developing gut.
Dev Biol. 2016 Sep 15;417(2):168-81. doi: 10.1016/j.ydbio.2016.05.030. Epub 2016 May 26.
5
Enteric neural crest-derived cells promote their migration by modifying their microenvironment through tenascin-C production.
Dev Biol. 2013 Oct 15;382(2):446-56. doi: 10.1016/j.ydbio.2013.08.006. Epub 2013 Aug 16.
8
Building a brain in the gut: development of the enteric nervous system.
Clin Genet. 2013 Apr;83(4):307-16. doi: 10.1111/cge.12054. Epub 2012 Nov 27.
9
Gut feelings: Studying enteric nervous system development, function, and disease in the zebrafish model system.
Dev Dyn. 2018 Feb;247(2):268-278. doi: 10.1002/dvdy.24597. Epub 2017 Oct 23.

引用本文的文献

1
Human gastroids to model regional patterning in early stomach development.
Nature. 2025 Sep 10. doi: 10.1038/s41586-025-09508-8.
3
CO and NO Coordinate Developmental Neuron Migration.
Int J Mol Sci. 2025 Aug 12;26(16):7783. doi: 10.3390/ijms26167783.
4
Mapping mesenchymal diversity in the developing human intestine and organoids.
bioRxiv. 2025 Jul 22:2025.07.22.665939. doi: 10.1101/2025.07.22.665939.
7
Engrafted nitrergic neurons derived from hPSCs improve gut dysmotility in mice.
Nature. 2025 Jun 25. doi: 10.1038/s41586-025-09208-3.
8
Enteric neural crest development in Astyanax mexicanus surface fish and cavefish.
Differentiation. 2025 Jun 13;144:100881. doi: 10.1016/j.diff.2025.100881.
9
Intestinal neuron-associated macrophages in health and disease.
Nat Immunol. 2025 May 21. doi: 10.1038/s41590-025-02150-6.

本文引用的文献

2
In vivo confinement promotes collective migration of neural crest cells.
J Cell Biol. 2016 Jun 6;213(5):543-55. doi: 10.1083/jcb.201602083. Epub 2016 May 30.
3
Enteric nervous system assembly: Functional integration within the developing gut.
Dev Biol. 2016 Sep 15;417(2):168-81. doi: 10.1016/j.ydbio.2016.05.030. Epub 2016 May 26.
4
Modelling collective cell migration of neural crest.
Curr Opin Cell Biol. 2016 Oct;42:22-28. doi: 10.1016/j.ceb.2016.03.023. Epub 2016 Apr 13.
5
Ascl1 Is Required for the Development of Specific Neuronal Subtypes in the Enteric Nervous System.
J Neurosci. 2016 Apr 13;36(15):4339-50. doi: 10.1523/JNEUROSCI.0202-16.2016.
6
White paper on guidelines concerning enteric nervous system stem cell therapy for enteric neuropathies.
Dev Biol. 2016 Sep 15;417(2):229-51. doi: 10.1016/j.ydbio.2016.04.001. Epub 2016 Apr 5.
7
Clinical aspects of neurointestinal disease: Pathophysiology, diagnosis, and treatment.
Dev Biol. 2016 Sep 15;417(2):217-28. doi: 10.1016/j.ydbio.2016.03.032. Epub 2016 Apr 6.
8
The Neural Crest Migrating into the Twenty-First Century.
Curr Top Dev Biol. 2016;116:115-34. doi: 10.1016/bs.ctdb.2015.12.003. Epub 2016 Jan 23.
9
How Tissue Mechanical Properties Affect Enteric Neural Crest Cell Migration.
Sci Rep. 2016 Feb 18;6:20927. doi: 10.1038/srep20927.
10
Isogenic enteric neural progenitor cells can replace missing neurons and glia in mice with Hirschsprung disease.
Neurogastroenterol Motil. 2016 Apr;28(4):498-512. doi: 10.1111/nmo.12744. Epub 2015 Dec 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验