Suppr超能文献

关于系统发育网络上最大简约法和似然法的奇特之处。

On the quirks of maximum parsimony and likelihood on phylogenetic networks.

作者信息

Bryant Christopher, Fischer Mareike, Linz Simone, Semple Charles

机构信息

Statistics New Zealand, Wellington, New Zealand.

Department for Mathematics and Computer Science, Ernst Moritz Arndt University, Greifswald, Germany.

出版信息

J Theor Biol. 2017 Mar 21;417:100-108. doi: 10.1016/j.jtbi.2017.01.013. Epub 2017 Jan 11.

Abstract

Maximum parsimony is one of the most frequently-discussed tree reconstruction methods in phylogenetic estimation. However, in recent years it has become more and more apparent that phylogenetic trees are often not sufficient to describe evolution accurately. For instance, processes like hybridization or lateral gene transfer that are commonplace in many groups of organisms and result in mosaic patterns of relationships cannot be represented by a single phylogenetic tree. This is why phylogenetic networks, which can display such events, are becoming of more and more interest in phylogenetic research. It is therefore necessary to extend concepts like maximum parsimony from phylogenetic trees to networks. Several suggestions for possible extensions can be found in recent literature, for instance the softwired and the hardwired parsimony concepts. In this paper, we analyze the so-called big parsimony problem under these two concepts, i.e. we investigate maximum parsimonious networks and analyze their properties. In particular, we show that finding a softwired maximum parsimony network is possible in polynomial time. We also show that the set of maximum parsimony networks for the hardwired definition always contains at least one phylogenetic tree. Lastly, we investigate some parallels of parsimony to different likelihood concepts on phylogenetic networks.

摘要

最大简约法是系统发育估计中讨论最为频繁的树重建方法之一。然而,近年来越来越明显的是,系统发育树往往不足以准确描述进化过程。例如,杂交或横向基因转移等过程在许多生物类群中很常见,并导致镶嵌式的关系模式,而这些无法用单一的系统发育树来表示。这就是为什么能够展示此类事件的系统发育网络在系统发育研究中越来越受到关注的原因。因此,有必要将最大简约法等概念从系统发育树扩展到网络。近期文献中可以找到一些关于可能扩展的建议,例如软连线和硬连线简约概念。在本文中,我们分析了这两个概念下的所谓大简约问题,即我们研究最大简约网络并分析它们的性质。特别地,我们表明在多项式时间内找到软连线最大简约网络是可能的。我们还表明,硬连线定义的最大简约网络集合总是至少包含一棵系统发育树。最后,我们研究了简约法与系统发育网络上不同似然概念之间的一些相似之处。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验