Suppr超能文献

头皮水平运行的微生物氧化铁丘生态系统对铁的高效低pH去除

Efficient Low-pH Iron Removal by a Microbial Iron Oxide Mound Ecosystem at Scalp Level Run.

作者信息

Grettenberger Christen L, Pearce Alexandra R, Bibby Kyle J, Jones Daniel S, Burgos William D, Macalady Jennifer L

机构信息

Department of Earth and Planetary Sciences, University of California-Davis, Davis, California, USA.

Department of Geosciences, The Pennsylvania State University, University Park, Pennsylvania, USA.

出版信息

Appl Environ Microbiol. 2017 Mar 17;83(7). doi: 10.1128/AEM.00015-17. Print 2017 Apr 1.

Abstract

Acid mine drainage (AMD) is a major environmental problem affecting tens of thousands of kilometers of waterways worldwide. Passive bioremediation of AMD relies on microbial communities to oxidize and remove iron from the system; however, iron oxidation rates in AMD environments are highly variable among sites. At Scalp Level Run (Cambria County, PA), first-order iron oxidation rates are 10 times greater than at other coal-associated iron mounds in the Appalachians. We examined the bacterial community at Scalp Level Run to determine whether a unique community is responsible for the rapid iron oxidation rate. Despite strong geochemical gradients, including a >10-fold change in the concentration of ferrous iron from 57.3 mg/liter at the emergence to 2.5 mg/liter at the base of the coal tailings pile, the bacterial community composition was nearly constant with distance from the spring outflow. Scalp Level Run contains many of the same taxa present in other AMD sites, but the community is dominated by two strains of , a species that is associated with high rates of Fe(II) oxidation in laboratory studies. Acid mine drainage pollutes more than 19,300 km of rivers and streams and 72,000 ha of lakes worldwide. Remediation is frequently ineffective and costly, upwards of $100 billion globally and nearly $5 billion in Pennsylvania alone. Microbial Fe(II) oxidation is more efficient than abiotic Fe(II) oxidation at low pH (P. C. Singer and W. Stumm, Science 167:1121-1123, 1970, https://doi.org/10.1126/science.167.3921.1121). Therefore, AMD bioremediation could harness microbial Fe(II) oxidation to fuel more-cost-effective treatments. Advances will require a deeper understanding of the ecology of Fe(II)-oxidizing microbial communities and the factors that control their distribution and rates of Fe(II) oxidation. We investigated bacterial communities that inhabit an AMD site with rapid Fe(II) oxidation and found that they were dominated by two operational taxonomic units (OTUs) of , a taxon associated with high laboratory rates of iron oxidation. This research represents a step forward in identifying taxa that can be used to enhance cost-effective AMD bioremediation.

摘要

酸性矿山排水(AMD)是一个重大的环境问题,影响着全球数万千米的水道。AMD的被动生物修复依赖微生物群落来氧化并从系统中去除铁;然而,AMD环境中的铁氧化速率在不同地点差异很大。在头皮水平径流(宾夕法尼亚州坎布里亚县),一级铁氧化速率比阿巴拉契亚地区其他与煤炭相关的铁丘高出10倍。我们研究了头皮水平径流处的细菌群落,以确定是否有独特的群落导致了快速的铁氧化速率。尽管存在强烈的地球化学梯度,包括从煤尾矿堆顶部亚铁离子浓度57.3毫克/升降至底部的2.5毫克/升,变化超过10倍,但细菌群落组成随离泉水流出点的距离几乎保持不变。头皮水平径流处包含许多与其他AMD地点相同的分类群,但该群落由两种菌株主导,在实验室研究中,该物种与高铁(II)氧化速率相关。全球范围内,酸性矿山排水污染了超过19300千米的河流和溪流以及72000公顷的湖泊。修复工作往往效率低下且成本高昂,全球高达1000亿美元以上,仅宾夕法尼亚州就接近50亿美元。在低pH值下,微生物铁(II)氧化比非生物铁(II)氧化更有效(P.C.辛格和W.施图姆,《科学》167:1121 - 1123,1970,https://doi.org/10.1126/science.167.3921.1121)。因此,AMD生物修复可以利用微生物铁(II)氧化来实现更具成本效益的处理。进展将需要更深入地了解铁(II)氧化微生物群落的生态学以及控制其分布和铁(II)氧化速率的因素。我们调查了一个具有快速铁(II)氧化的AMD地点的细菌群落,发现它们由的两个操作分类单元(OTU)主导,该分类群在实验室中铁氧化速率较高。这项研究在识别可用于增强具有成本效益的AMD生物修复的分类群方面向前迈进了一步。

相似文献

10
Bioelectrochemical treatment of acid mine drainage dominated with iron.生物电化学处理以铁为主的酸性矿山排水。
J Hazard Mater. 2012 Nov 30;241-242:411-7. doi: 10.1016/j.jhazmat.2012.09.062. Epub 2012 Oct 5.

引用本文的文献

2
Convergent Community Assembly among Globally Separated Acidic Cave Biofilms.全球分离的酸性洞穴生物膜的趋同群落组装。
Appl Environ Microbiol. 2023 Jan 31;89(1):e0157522. doi: 10.1128/aem.01575-22. Epub 2023 Jan 5.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验