Suppr超能文献

可变聚腺苷酸化的组织特异性调控在表皮发育过程中抑制神经元锚蛋白亚型的表达。

Tissue-specific regulation of alternative polyadenylation represses expression of a neuronal ankyrin isoform in epidermal development.

作者信息

Chen Fei, Chisholm Andrew D, Jin Yishi

机构信息

Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.

Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.

出版信息

Development. 2017 Feb 15;144(4):698-707. doi: 10.1242/dev.146001. Epub 2017 Jan 13.

Abstract

Differential mRNA polyadenylation plays an important role in shaping the neuronal transcriptome. In , several ankyrin isoforms are produced from the locus through alternative polyadenylation. Here, we identify a key role for an intronic polyadenylation site (PAS) in temporal- and tissue-specific regulation of UNC-44/ankyrin isoforms. Removing an intronic PAS results in ectopic expression of the neuronal ankyrin isoform in non-neural tissues. This mis-expression underlies epidermal developmental defects in mutants of the conserved tumor suppressor death-associated protein kinase We have previously reported that the use of this intronic PAS depends on the nuclear polyadenylation factor SYDN-1, which inhibits the RNA polymerase II CTD phosphatase SSUP-72. Consistent with this, loss of blocks ectopic expression of neuronal ankyrin and suppresses epidermal morphology defects of These effects of are mediated by autonomously in the epidermis. We also show that a peptidyl-prolyl isomerase PINN-1 antagonizes SYDN-1 in the spatiotemporal control of neuronal ankyrin isoform. Moreover, the nuclear localization of PINN-1 is altered in mutants. Our data reveal that tissue and stage-specific expression of ankyrin isoforms relies on differential activity of positive and negative regulators of alternative polyadenylation.

摘要

差异性mRNA聚腺苷酸化在塑造神经元转录组中起重要作用。在[具体研究中],通过可变聚腺苷酸化从[基因座]产生了几种锚蛋白亚型。在这里,我们确定了一个内含子聚腺苷酸化位点(PAS)在UNC-44/锚蛋白亚型的时间和组织特异性调控中的关键作用。去除一个内含子PAS会导致神经元锚蛋白亚型在非神经组织中异位表达。这种错误表达是保守的肿瘤抑制因子死亡相关蛋白激酶突变体中表皮发育缺陷的基础。我们之前报道过,这个内含子PAS的使用依赖于核聚腺苷酸化因子SYDN-1,它抑制RNA聚合酶II CTD磷酸酶SSUP-72。与此一致,[基因]缺失会阻止神经元锚蛋白的异位表达,并抑制[相关基因]突变体的表皮形态缺陷。[基因]的这些作用是由其在表皮中自主介导的。我们还表明,肽基脯氨酰异构酶PINN-1在神经元锚蛋白亚型的时空控制中拮抗SYDN-1。此外,PINN-1的核定位在[相关基因]突变体中发生改变。我们的数据表明,锚蛋白亚型的组织和阶段特异性表达依赖于可变聚腺苷酸化正负调节因子的差异活性。

相似文献

3
Casein Kinase 1δ Stabilizes Mature Axons by Inhibiting Transcription Termination of Ankyrin.
Dev Cell. 2020 Jan 6;52(1):88-103.e18. doi: 10.1016/j.devcel.2019.12.005.
8
Nuclear pre-mRNA 3'-end processing regulates synapse and axon development in C. elegans.
Development. 2010 Jul;137(13):2237-50. doi: 10.1242/dev.049692.
9
Intron-specific patterns of divergence of lin-11 regulatory function in the C. elegans nervous system.
Dev Biol. 2017 Apr 1;424(1):90-103. doi: 10.1016/j.ydbio.2017.02.005. Epub 2017 Feb 17.
10
The C. elegans nck-1 gene encodes two isoforms and is required for neuronal guidance.
Dev Biol. 2011 Jun 1;354(1):55-66. doi: 10.1016/j.ydbio.2011.03.019. Epub 2011 Apr 6.

引用本文的文献

1
Death-associated protein kinase 1: a double-edged sword in health and disease.
Front Immunol. 2025 Aug 21;16:1593394. doi: 10.3389/fimmu.2025.1593394. eCollection 2025.
3
Sequence variations and accessory proteins adapt TMC functions to distinct sensory modalities.
Neuron. 2024 Sep 4;112(17):2922-2937.e8. doi: 10.1016/j.neuron.2024.06.013. Epub 2024 Jul 9.
4
A kinesin-1 adaptor complex controls bimodal slow axonal transport of spectrin in Caenorhabditis elegans.
Dev Cell. 2023 Oct 9;58(19):1847-1863.e12. doi: 10.1016/j.devcel.2023.08.031. Epub 2023 Sep 25.
5
The kingdom of the prolyl-isomerase Pin1: The structural and functional convergence and divergence of Pin1.
Front Cell Dev Biol. 2022 Aug 30;10:956071. doi: 10.3389/fcell.2022.956071. eCollection 2022.
6
The regulatory role of Pin1 in neuronal death.
Neural Regen Res. 2023 Jan;18(1):74-80. doi: 10.4103/1673-5374.341043.
8
Synaptic Protein Degradation Controls Sexually Dimorphic Circuits through Regulation of DCC/UNC-40.
Curr Biol. 2020 Nov 2;30(21):4128-4141.e5. doi: 10.1016/j.cub.2020.08.002. Epub 2020 Aug 27.
10
Ankyrin Is An Intracellular Tether for TMC Mechanotransduction Channels.
Neuron. 2020 Jul 8;107(1):112-125.e10. doi: 10.1016/j.neuron.2020.03.026. Epub 2020 Apr 22.

本文引用的文献

2
Cytoskeletal control of axon domain assembly and function.
Curr Opin Neurobiol. 2016 Aug;39:116-21. doi: 10.1016/j.conb.2016.05.001. Epub 2016 May 18.
3
Nanoscale Architecture of the Axon Initial Segment Reveals an Organized and Robust Scaffold.
Cell Rep. 2015 Dec 29;13(12):2781-93. doi: 10.1016/j.celrep.2015.11.051. Epub 2015 Dec 17.
5
A majority of m6A residues are in the last exons, allowing the potential for 3' UTR regulation.
Genes Dev. 2015 Oct 1;29(19):2037-53. doi: 10.1101/gad.269415.115. Epub 2015 Sep 24.
6
Streamlined Genome Engineering with a Self-Excising Drug Selection Cassette.
Genetics. 2015 Aug;200(4):1035-49. doi: 10.1534/genetics.115.178335. Epub 2015 Jun 3.
9
Giant ankyrin-G: a critical innovation in vertebrate evolution of fast and integrated neuronal signaling.
Proc Natl Acad Sci U S A. 2015 Jan 27;112(4):957-64. doi: 10.1073/pnas.1416544112. Epub 2014 Dec 31.
10
ELAV links paused Pol II to alternative polyadenylation in the Drosophila nervous system.
Mol Cell. 2015 Jan 22;57(2):341-8. doi: 10.1016/j.molcel.2014.11.024. Epub 2014 Dec 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验