Del Rosario John S, Feldmann Katherine Genevieve, Ahmed Towfiq, Amjad Uzair, Ko BakKeung, An JunHyung, Mahmud Tauhid, Salama Maha, Mei Shirley, Asemota Daniel, Mano Itzhak
Department of Physiology, Pharmacology, and Neuroscience, Sophie Davis School of Biomedical Education (SBE), City College of New York (CCNY), The City University of New York (CUNY), New York, NY, USA.
MS program in Biology, CCNY, CUNY, New York, NY, USA.
BMC Neurosci. 2015 Apr 23;16:25. doi: 10.1186/s12868-015-0158-2.
Excitotoxicity (the toxic overstimulation of neurons by the excitatory transmitter Glutamate) is a central process in widespread neurodegenerative conditions such as brain ischemia and chronic neurological diseases. Many mechanisms have been suggested to mediate excitotoxicity, but their significance across diverse excitotoxic scenarios remains unclear. Death Associated Protein Kinase (DAPK), a critical molecular switch that controls a range of key signaling and cell death pathways, has been suggested to have an important role in excitotoxicity. However, the molecular mechanism by which DAPK exerts its effect is controversial. A few distinct mechanisms have been suggested by single (sometimes contradicting) studies, and a larger array of potential mechanisms is implicated by the extensive interactome of DAPK.
Here we analyze a well-characterized model of excitotoxicity in the nematode C. elegans to show that DAPK is an important mediator of excitotoxic neurodegeneration across a large evolutionary distance. We further show that some proposed mechanisms of DAPK's action (modulation of synaptic strength, involvement of the DANGER-related protein MAB-21, and autophagy) do not have a major role in nematode excitotoxicity. In contrast, Pin1/PINN-1 (a DAPK interaction-partner and a peptidyl-prolyl isomerase involved in chronic neurodegenerative conditions) suppresses neurodegeneration in our excitotoxicity model.
Our studies highlight the prominence of DAPK and Pin1/PINN-1 as conserved mediators of cell death processes in diverse scenarios of neurodegeneration.
兴奋性毒性(兴奋性递质谷氨酸对神经元的毒性过度刺激)是脑缺血和慢性神经疾病等广泛神经退行性疾病中的核心过程。已经提出了许多介导兴奋性毒性的机制,但它们在不同兴奋性毒性情况下的重要性仍不清楚。死亡相关蛋白激酶(DAPK)是一种控制一系列关键信号和细胞死亡途径的关键分子开关,已被认为在兴奋性毒性中起重要作用。然而,DAPK发挥作用的分子机制存在争议。单一(有时相互矛盾)的研究提出了一些不同的机制,而DAPK广泛的相互作用组则暗示了更多潜在机制。
在这里,我们分析了线虫秀丽隐杆线虫中一个特征明确的兴奋性毒性模型,以表明DAPK是跨越较大进化距离的兴奋性毒性神经退行性变的重要介质。我们进一步表明,一些提出的DAPK作用机制(突触强度的调节、与DANGER相关蛋白MAB-21的参与以及自噬)在秀丽隐杆线虫的兴奋性毒性中不起主要作用。相反,Pin1/PINN-1(一种DAPK相互作用伙伴和参与慢性神经退行性疾病的肽基脯氨酰异构酶)在我们的兴奋性毒性模型中抑制神经退行性变。
我们的研究强调了DAPK和Pin1/PINN-1作为不同神经退行性变情况下细胞死亡过程的保守介质的突出地位。