Suppr超能文献

单染色体增益通常起肿瘤抑制作用。

Single-chromosome Gains Commonly Function as Tumor Suppressors.

作者信息

Sheltzer Jason M, Ko Julie H, Replogle John M, Habibe Burgos Nicole C, Chung Erica S, Meehl Colleen M, Sayles Nicole M, Passerini Verena, Storchova Zuzana, Amon Angelika

机构信息

Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Cancer Cell. 2017 Feb 13;31(2):240-255. doi: 10.1016/j.ccell.2016.12.004. Epub 2017 Jan 12.

Abstract

Aneuploidy is a hallmark of cancer, although its effects on tumorigenesis are unclear. Here, we investigated the relationship between aneuploidy and cancer development using cells engineered to harbor single extra chromosomes. We found that nearly all trisomic cell lines grew poorly in vitro and as xenografts, relative to genetically matched euploid cells. Moreover, the activation of several oncogenic pathways failed to alleviate the fitness defect induced by aneuploidy. However, following prolonged growth, trisomic cells acquired additional chromosomal alterations that were largely absent from their euploid counterparts and that correlated with improved fitness. Thus, while single-chromosome gains can suppress transformation, the genome-destabilizing effects of aneuploidy confer an evolutionary flexibility that may contribute to the aggressive growth of advanced malignancies with complex karyotypes.

摘要

非整倍体是癌症的一个标志,尽管其对肿瘤发生的影响尚不清楚。在这里,我们使用经过基因工程改造以携带单条额外染色体的细胞,研究了非整倍体与癌症发展之间的关系。我们发现,相对于基因匹配的整倍体细胞,几乎所有三体细胞系在体外培养和异种移植中生长都很差。此外,几种致癌途径的激活未能减轻非整倍体诱导的适应性缺陷。然而,经过长时间生长后,三体细胞获得了额外的染色体改变,而这些改变在其整倍体对应细胞中基本不存在,并且与适应性改善相关。因此,虽然单条染色体的增加可以抑制细胞转化,但非整倍体的基因组不稳定效应赋予了一种进化灵活性,这可能有助于具有复杂核型的晚期恶性肿瘤的侵袭性生长。

相似文献

1
Single-chromosome Gains Commonly Function as Tumor Suppressors.
Cancer Cell. 2017 Feb 13;31(2):240-255. doi: 10.1016/j.ccell.2016.12.004. Epub 2017 Jan 12.
2
Cancer-causing karyotypes: chromosomal equilibria between destabilizing aneuploidy and stabilizing selection for oncogenic function.
Cancer Genet Cytogenet. 2009 Jan 1;188(1):1-25. doi: 10.1016/j.cancergencyto.2008.08.016.
3
On the karyotypic origin and evolution of cancer cells.
Cancer Genet Cytogenet. 2009 Oct 15;194(2):96-110. doi: 10.1016/j.cancergencyto.2009.06.008.
4
Cancer cells preferentially lose small chromosomes.
Int J Cancer. 2013 May 15;132(10):2316-26. doi: 10.1002/ijc.27924. Epub 2012 Nov 26.
5
The presence of extra chromosomes leads to genomic instability.
Nat Commun. 2016 Feb 15;7:10754. doi: 10.1038/ncomms10754.
7
Too much to handle - how gaining chromosomes destabilizes the genome.
Cell Cycle. 2016 Nov;15(21):2867-2874. doi: 10.1080/15384101.2016.1231285. Epub 2016 Sep 16.
8
Singling Out Chromosome Gains in Tumor Evolution.
Cancer Cell. 2017 Feb 13;31(2):165-166. doi: 10.1016/j.ccell.2017.01.011.
9
Causes and consequences of aneuploidy in cancer.
Nat Rev Genet. 2012 Jan 24;13(3):189-203. doi: 10.1038/nrg3123.
10
Single Chromosome Aneuploidy Induces Genome-Wide Perturbation of Nuclear Organization and Gene Expression.
Neoplasia. 2019 Apr;21(4):401-412. doi: 10.1016/j.neo.2019.02.003. Epub 2019 Mar 22.

引用本文的文献

1
Strain background interacts with chromosome 7 aneuploidy to determine commensal and virulence phenotypes in Candida albicans.
PLoS Genet. 2025 Jun 27;21(6):e1011650. doi: 10.1371/journal.pgen.1011650. eCollection 2025 Jun.
2
Aneuploidy generates enhanced nucleotide dependency and sensitivity to metabolic perturbation.
Genes Dev. 2025 Jun 2;39(11-12):770-786. doi: 10.1101/gad.352512.124.
3
Decoding chromosomal instability insights in CRC by integrating omics and patient-derived organoids.
J Exp Clin Cancer Res. 2025 Feb 28;44(1):77. doi: 10.1186/s13046-025-03308-8.
4
DNA damage checkpoints balance a tradeoff between diploid- and polyploid-derived arrest failures.
bioRxiv. 2025 Feb 16:2025.02.14.638318. doi: 10.1101/2025.02.14.638318.
5
Proteogenomic analysis reveals adaptive strategies for alleviating the consequences of aneuploidy in cancer.
EMBO J. 2025 Mar;44(6):1829-1865. doi: 10.1038/s44318-025-00372-w. Epub 2025 Feb 10.
8
Translocation: A Common Tumor Driver of Distinct Human Neoplasms.
Int J Mol Sci. 2024 Dec 21;25(24):13693. doi: 10.3390/ijms252413693.
9
Aneuploidy as a driver of human cancer.
Nat Genet. 2024 Oct;56(10):2014-2026. doi: 10.1038/s41588-024-01916-2. Epub 2024 Oct 2.
10
Proteogenomic characterization of skull-base chordoma.
Nat Commun. 2024 Sep 27;15(1):8338. doi: 10.1038/s41467-024-52285-7.

本文引用的文献

1
Kinetic Analysis of Protein Stability Reveals Age-Dependent Degradation.
Cell. 2016 Oct 20;167(3):803-815.e21. doi: 10.1016/j.cell.2016.09.015. Epub 2016 Oct 6.
3
The presence of extra chromosomes leads to genomic instability.
Nat Commun. 2016 Feb 15;7:10754. doi: 10.1038/ncomms10754.
4
Aneuploidy-induced cellular stresses limit autophagic degradation.
Genes Dev. 2015 Oct 1;29(19):2010-21. doi: 10.1101/gad.269118.115. Epub 2015 Sep 24.
5
Mitotic entry in the presence of DNA damage is a widespread property of aneuploidy in yeast.
Mol Biol Cell. 2015 Apr 15;26(8):1440-51. doi: 10.1091/mbc.E14-10-1442. Epub 2015 Feb 18.
6
HSF1 deficiency and impaired HSP90-dependent protein folding are hallmarks of aneuploid human cells.
EMBO J. 2014 Oct 16;33(20):2374-87. doi: 10.15252/embj.201488648. Epub 2014 Sep 9.
7
Chromosome instability induced by Mps1 and p53 mutation generates aggressive lymphomas exhibiting aneuploidy-induced stress.
Proc Natl Acad Sci U S A. 2014 Sep 16;111(37):13427-32. doi: 10.1073/pnas.1400892111. Epub 2014 Sep 2.
9
Unique features of the transcriptional response to model aneuploidy in human cells.
BMC Genomics. 2014 Feb 18;15:139. doi: 10.1186/1471-2164-15-139.
10
Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome.
Cell. 2013 Nov 7;155(4):948-62. doi: 10.1016/j.cell.2013.10.011. Epub 2013 Oct 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验