Suppr超能文献

利用机器学习揭示单细胞DNA复制时间动态变化揭示癌症进展中的异质性。

Unravelling single-cell DNA replication timing dynamics using machine learning reveals heterogeneity in cancer progression.

作者信息

Josephides Joseph M, Chen Chun-Long

机构信息

Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, Paris, France.

出版信息

Nat Commun. 2025 Feb 8;16(1):1472. doi: 10.1038/s41467-025-56783-0.

Abstract

Genomic heterogeneity has largely been overlooked in single-cell replication timing (scRT) studies. Here, we develop MnM, an efficient machine learning-based tool that allows disentangling scRT profiles from heterogenous samples. We use single-cell copy number data to accurately perform missing value imputation, identify cell replication states, and detect genomic heterogeneity. This allows us to separate somatic copy number alterations from copy number changes resulting from DNA replication. Our methodology brings critical insights into chromosomal aberrations and highlights the ubiquitous aneuploidy process during tumorigenesis. The copy number and scRT profiles obtained by analysing >119,000 high-quality human single cells from different cell lines, patient tumours and patient-derived xenograft samples leads to a multi-sample heterogeneity-resolved scRT atlas. This atlas is an important resource for cancer research and demonstrates that scRT profiles can be used to study replication timing heterogeneity in cancer. Our findings also highlight the importance of studying cancer tissue samples to comprehensively grasp the complexities of DNA replication because cell lines, although convenient, lack dynamic environmental factors. These results facilitate future research at the interface of genomic instability and replication stress during cancer progression.

摘要

在单细胞复制时间(scRT)研究中,基因组异质性在很大程度上被忽视了。在此,我们开发了MnM,这是一种基于机器学习的高效工具,能够从异质样本中解析出scRT图谱。我们利用单细胞拷贝数数据准确地进行缺失值插补、识别细胞复制状态并检测基因组异质性。这使我们能够将体细胞拷贝数改变与DNA复制导致的拷贝数变化区分开来。我们的方法为染色体畸变带来了关键见解,并突出了肿瘤发生过程中普遍存在的非整倍体过程。通过分析来自不同细胞系、患者肿瘤和患者来源的异种移植样本的超过119,000个高质量人类单细胞所获得的拷贝数和scRT图谱,形成了一个多样本异质性解析的scRT图谱集。该图谱集是癌症研究的重要资源,并表明scRT图谱可用于研究癌症中的复制时间异质性。我们的研究结果还强调了研究癌症组织样本对于全面理解DNA复制复杂性的重要性,因为细胞系虽然方便,但缺乏动态环境因素。这些结果有助于未来在癌症进展过程中基因组不稳定与复制应激界面的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad8/11807193/8ede4ca69c16/41467_2025_56783_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验