Suppr超能文献

隧道控制:四氢-1H-环丁[e]茚衍生物中 6π-电环化和[1,5]H-σ迁移反应的竞争。

Tunneling Control: Competition between 6π-Electrocyclization and [1,5]H-Sigmatropic Shift Reactions in Tetrahydro-1H-cyclobuta[e]indene Derivatives.

机构信息

Department of Spectroscopy, Indian Association for the Cultivation of Science , 2A and 2B Raja S. C. Mullick Road, Jadavpur, 700032 Kolkata, West Bengal, India.

出版信息

J Org Chem. 2017 Feb 3;82(3):1558-1566. doi: 10.1021/acs.joc.6b02759. Epub 2017 Jan 25.

Abstract

Direct dynamics calculation using canonical variational transtition state theory (CVT) inclusive of small curvature tunneling (SCT) reveals the influential role of quantum mechanical tunneling (QMT) for 2,2a,5,7b-tetrahydro-1H-cyclobuta[e]indene derivatives (2a-2j) in governing their product selectivity. 2a-2j follow two distinct reaction channels, namely, 6π-electrocyclization (2 → 3) and [1,5]H-sigmatropic shift (2 → 4), among which the activation barrier is higher for [1,5]H-shift (2 → 4), thereby favoring the kinetically controlled product (3a-3j) as anticipated. However, SCT calculations show that a narrower barrier and smaller mass of participating atoms make QMT more pronounced for [1,5]H-shift reaction despite its higher activation energy, which results in a competition between kinetic controlled (2 → 3) and tunneling controlled (2 → 4) products. At low temperature (T ≤ 170 K), when QMT is the dominant pathway, the tunneling controlled product (4a-4j) is formed exclusively. As the reaction temperature increases, the role of QMT becomes less prominent and eventually gets kinetically controlled at room temperature. Nevertheless, QMT strongly tunes the product ratio at ambient temperatures by favoring the [1,5]H-shift reaction over 6π-electrocyclization. For 2a, k:k increases from 1:13 at CVT level to 1:2 at CVT+SCT level for room temperature.

摘要

使用正则变分过渡态理论(CVT)包括小曲率隧穿(SCT)的直接动力学计算揭示了量子力学隧穿(QMT)对 2,2a,5,7b-四氢-1H-环丁[e]茚衍生物(2a-2j)在控制其产物选择性方面的重要作用。2a-2j 遵循两条不同的反应通道,即 6π-电环化(2 → 3)和[1,5]H-重排(2 → 4),其中[1,5]H-重排(2 → 4)的活化能较高,因此预期动力学控制产物(3a-3j)是有利的。然而,SCT 计算表明,尽管[1,5]H-重排反应的活化能较高,但较小的势垒和参与原子的质量使得 QMT 更为显著,这导致了动力学控制的(2 → 3)和隧穿控制的(2 → 4)产物之间的竞争。在低温(T ≤ 170 K)下,当 QMT 是主要途径时,仅形成隧穿控制产物(4a-4j)。随着反应温度的升高,QMT 的作用变得不那么显著,最终在室温下达到动力学控制。然而,QMT 通过有利于[1,5]H-重排反应而不是 6π-电环化反应强烈调节产物比。对于 2a,在 CVT 水平下 k:k 从 1:13 增加到 CVT+SCT 水平下的 1:2,对于室温。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验