Pickard J M J, Burke N, Davidson S M, Yellon D M
The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK.
Basic Res Cardiol. 2017 Mar;112(2):11. doi: 10.1007/s00395-017-0601-x. Epub 2017 Jan 13.
This study aimed to investigate the role of the intrinsic cardiac nervous system in the mechanism of classical myocardial ischaemic preconditioning (IPC). Isolated perfused rat hearts were subjected to 35-min regional ischaemia and 60-min reperfusion. IPC was induced as three cycles of 5-min global ischaemia-reperfusion, and provided significant reduction in infarct size (IS/AAR = 14 ± 2% vs control IS/AAR = 48 ± 3%, p < 0.05). Treatment with the ganglionic antagonist, hexamethonium (50 μM), blocked IPC protection (IS/AAR = 37 ± 7%, p < 0.05 vs IPC). Moreover, the muscarinic antagonist, atropine (100 nM), also abrogated IPC-mediated protection (IS/AAR = 40 ± 3%, p < 0.05 vs IPC). This indicates that intrinsic cardiac ganglia remain intact in the Langendorff preparation and are important in the mechanism of IPC. In a second group of experiments, coronary effluent collected following IPC, from ex vivo perfused rat hearts, provided significant cardioprotection when perfused through a naïve isolated rat heart prior to induction of regional ischaemia-reperfusion injury (IRI) (IS/ARR = 19 ± 2, p < 0.05 vs control effluent). This protection was also abrogated by treating the naïve heart with hexamethonium, indicating the humoral trigger of IPC induces protection via an intrinsic neuronal mechanism (IS/AAR = 46 ± 5%, p < 0.05 vs IPC effluent). In addition, a large release in ACh was observed in coronary effluent was observed following IPC (IPC = 0.36 ± 0.03 μM vs C = 0.04 ± 0.04 μM, n = 4, p < 0.001). Interestingly, however, IPC effluent was not able to significantly protect isolated cardiomyocytes from simulated ischaemia-reperfusion injury (cell death = 45 ± 6%, p = 0.09 vs control effluent). In conclusion, IPC involves activation of the intrinsic cardiac nervous system, leading to release of ACh in the ventricles and induction of protection via activation of muscarinic receptors.
本研究旨在探讨心脏内在神经系统在经典心肌缺血预处理(IPC)机制中的作用。将离体灌注的大鼠心脏进行35分钟的局部缺血和60分钟的再灌注。IPC通过5分钟全心缺血-再灌注的三个周期诱导,可使梗死面积显著减小(梗死面积/危险区域面积=14±2%,而对照组梗死面积/危险区域面积=48±3%,p<0.05)。用神经节拮抗剂六甲铵(50μM)处理可阻断IPC的保护作用(梗死面积/危险区域面积=37±7%,与IPC相比p<0.05)。此外,毒蕈碱拮抗剂阿托品(100 nM)也可消除IPC介导的保护作用(梗死面积/危险区域面积=40±3%,与IPC相比p<0.05)。这表明在Langendorff制备中心脏内在神经节保持完整,且在IPC机制中起重要作用。在第二组实验中,从离体灌注的大鼠心脏收集IPC后的冠状动脉流出液,在诱导局部缺血-再灌注损伤(IRI)之前通过未处理的离体大鼠心脏灌注时可提供显著的心脏保护作用(梗死面积/危险区域面积=19±2,与对照流出液相比p<0.05)。用六甲铵处理未处理的心脏也可消除这种保护作用,表明IPC的体液触发因子通过内在神经元机制诱导保护作用(梗死面积/危险区域面积=46±5%,与IPC流出液相比p<0.05)。此外,IPC后观察到冠状动脉流出液中有大量乙酰胆碱释放(IPC=0.36±0.03μM,而对照组=0.04±0.04μM,n=4,p<0.001)。然而,有趣的是,IPC流出液不能显著保护离体心肌细胞免受模拟缺血-再灌注损伤(细胞死亡=45±6%,与对照流出液相比p=0.09)。总之,IPC涉及心脏内在神经系统的激活,导致心室中乙酰胆碱释放,并通过毒蕈碱受体的激活诱导保护作用。